IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v114y2021icp233-244.html
   My bibliography  Save this article

Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network

Author

Listed:
  • Ziakopoulos, Apostolos
  • Oikonomou, Maria G.
  • Vlahogianni, Eleni I.
  • Yannis, George

Abstract

Autonomous point to point shuttles are an emerging paradigm of a future mobility-on-demand ecosystem. However, the traffic and environmental impacts of their operation are largely under researched especially in relation to influential infrastructure related factors and service-related specifications. The scope of this study is to reveal the factors that may affect the degree and magnitude of the road segment level impacts of an autonomous urban shuttle service (AUSS) operating in a city using microsimulation and structural equation modeling (SEM). For the purposes of this research, a systematic framework is developed and applied in the city center of Athens (Greece), which encompasses different scenarios of operations including: (i) Baseline (no AUSS operation), (ii) AUSS operation with a dedicated lane during peak hour, (iii) AUSS operation mixed with regular traffic during peak hour and (iv) AUSS operation mixed with regular traffic during off-peak hour. Two connected automated vehicle (CAV) profiles were used to model the advent of automation in the overall traffic: a cautious profile is introduced first, followed by a more aggressive profile. SEM findings indicate that the AUSS operation has a significant effect on cumulative travel time per segment and CO2 emissions per segment only during the scenario of mixed operation with traffic during off-peak hours. Additionally, the influence of the network geometry is correlated with reduced travel time and with increased CO2 emissions. Road traffic density was found to be positively correlated with both travel time and CO2 emissions, while the penetration of both cautious and aggressive CAVs was found to be negatively correlated with both indicators.

Suggested Citation

  • Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
  • Handle: RePEc:eee:trapol:v:114:y:2021:i:c:p:233-244
    DOI: 10.1016/j.tranpol.2021.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21002882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    2. Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    3. Greenblatt, Jeffery & Shaheen, Susan PhD, 2015. "Automated Vehicles, On-Demand Mobility and Environmental Impacts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt23r1h80t, Institute of Transportation Studies, UC Berkeley.
    4. Elvik, Rune, 2020. "The demand for automated vehicles: A synthesis of willingness-to-pay surveys," Economics of Transportation, Elsevier, vol. 23(C).
    5. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    6. Ivanov, Stanislav Hristov & Kuyumdzhiev, Mihail & Webster, Craig, 2020. "Automation fears: drivers and solutions," SocArXiv jze3u, Center for Open Science.
    7. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    8. Song, Siqi & Diao, Mi & Feng, Chen-Chieh, 2016. "Individual transport emissions and the built environment: A structural equation modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 206-219.
    9. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    10. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    11. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    12. Ivanov, Stanislav & Kuyumdzhiev, Mihail & Webster, Craig, 2020. "Automation fears: Drivers and solutions," Technology in Society, Elsevier, vol. 63(C).
    13. Fraedrich, Eva & Heinrichs, Dirk & Bahamonde-Birke, Francisco J. & Cyganski, Rita, 2019. "Autonomous driving, the built environment and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 162-172.
    14. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    15. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    16. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    17. Salonen, Arto O., 2018. "Passenger's subjective traffic safety, in-vehicle security and emergency management in the driverless shuttle bus in Finland," Transport Policy, Elsevier, vol. 61(C), pages 106-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    2. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    3. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    4. Alexandra König & Christina Wirth & Jan Grippenkoven, 2021. "Generation Y’s Information Needs Concerning Sharing Rides in Autonomous Mobility on Demand Systems," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    5. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    6. Lazarus, Jessica R. & Caicedo, Juan D. & Bayen, Alexandre M. & Shaheen, Susan A., 2021. "To Pool or Not to Pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 199-222.
    7. Chee, Pei Nen Esther & Susilo, Yusak O. & Wong, Yiik Diew, 2020. "Determinants of intention-to-use first-/last-mile automated bus service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 350-375.
    8. Anastasia Roukouni & Gonçalo Homem de Almeida Correia, 2020. "Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    9. Nogués, Soledad & González-González, Esther & Cordera, Rubén, 2020. "New urban planning challenges under emerging autonomous mobility: evaluating backcasting scenarios and policies through an expert survey," Land Use Policy, Elsevier, vol. 95(C).
    10. Rosell, Jordi & Allen, Jaime, 2020. "Test-riding the driverless bus: Determinants of satisfaction and reuse intention in eight test-track locations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 166-189.
    11. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    12. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    13. Mirzaei Abbasabadi, Hamed & Soleimani, Mohammad, 2021. "Examining the effects of digital technology expansion on Unemployment: A cross-sectional investigation," Technology in Society, Elsevier, vol. 64(C).
    14. Beier, Grischa & Matthess, Marcel & Shuttleworth, Luke & Guan, Ting & de Oliveira Pereira Grudzien, David Iubel & Xue, Bing & Pinheiro de Lima, Edson & Chen, Ling, 2022. "Implications of Industry 4.0 on industrial employment: A comparative survey from Brazilian, Chinese, and German practitioners," Technology in Society, Elsevier, vol. 70(C).
    15. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    16. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    17. Kassens-Noor, Eva & Kotval-Karamchandani, Zeenat & Cai, Meng, 2020. "Willingness to ride and perceptions of autonomous public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 92-104.
    18. Ramos, Minerva E. & Garza-Rodríguez, Jorge & Gibaja-Romero, Damian E., 2022. "Automation of employment in the presence of industry 4.0: The case of Mexico," Technology in Society, Elsevier, vol. 68(C).
    19. Roberto Battistini & Luca Mantecchini & Maria Nadia Postorino, 2020. "Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    20. Lars Meyer-Waarden & Julien Cloarec, 2022. "“Baby, you can drive my car”: Psychological antecedents that drive consumers’ adoption of AI-powered autonomous vehicles," Post-Print hal-03385891, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:114:y:2021:i:c:p:233-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.