IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v155y2021ics136655452100257x.html
   My bibliography  Save this article

Generating bunkering statistics from AIS data: A machine learning approach

Author

Listed:
  • Fuentes, Gabriel

Abstract

In shipping, the optimization of the bunkering location is dependent on price, deviation from the planned route and the cost of delays incurred by the bunkering operation itself. Despite their potential importance, detailed statistics for bunkering operations at the individual port call level (e.g. waiting times, barge capacity, location - anchorage or terminal) are not available. I develop a new method, based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, that can a) identify tanker vessels used as bunkering tankers, b) detect stationary ocean-going vessels at anchorage or alongside terminals and c) automatically recognize bunkering operations as a rendezvous between an ocean-going vessel and a bunkering barge. I find that the high time complexity of the DBSCAN algorithm in this setting can be compensated by adjusting the algorithm to distributed computer settings. In the empirical study, I use the output to describe the relative importance of Mediterranean ports for bunkering and provide statistics on waiting and servicing times. The empirical findings are important for the optimization of the bunkering location decision in shipping and studies on regional port competitiveness.

Suggested Citation

  • Fuentes, Gabriel, 2021. "Generating bunkering statistics from AIS data: A machine learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:transe:v:155:y:2021:i:c:s136655452100257x
    DOI: 10.1016/j.tre.2021.102495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452100257X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tichavska, Miluše & Tovar, Beatriz, 2015. "Port-city exhaust emission model: An application to cruise and ferry operations in Las Palmas Port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 347-360.
    2. Roar Adland & Haiying Jia & Siri P. Strandenes, 2017. "Are AIS-based trade volume estimates reliable? The case of crude oil exports," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(5), pages 657-665, July.
    3. Raimonds Aronietis & Christa Sys & Edwin van Hassel & Thierry Vanelslander, 2017. "Investigating the bunkering choice determinants: the case of the port of Antwerp," Journal of Shipping and Trade, Springer, vol. 2(1), pages 1-13, December.
    4. Acosta, Manuel & Coronado, Daniel & Del Mar Cerban, Ma, 2011. "Bunkering competition and competitiveness at the ports of the Gibraltar Strait," Journal of Transport Geography, Elsevier, vol. 19(4), pages 911-916.
    5. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    6. Prochazka, Vít & Adland, Roar & Wolff, François-Charles, 2019. "Contracting decisions in the crude oil transportation market: Evidence from fixtures matched with AIS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 37-53.
    7. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    8. Sheng, Xiaoming & Chew, Ek Peng & Lee, Loo Hay, 2015. "(s,S) policy model for liner shipping refueling and sailing speed optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 76-92.
    9. Omar Besbes & Sergei Savin, 2009. "Going Bunkers: The Joint Route Selection and Refueling Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 694-711, February.
    10. Haiying Jia & Ove Daae Lampe & Veronika Solteszova & Siri P. Strandenes, 2017. "An automatic algorithm for generating seaborne transport pattern maps based on AIS," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 619-630, December.
    11. Pan Sheng & Jingbo Yin, 2018. "Extracting Shipping Route Patterns by Trajectory Clustering Model Based on Automatic Identification System Data," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    12. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eisuke Watanabe & Ryuichi Shibasaki, 2023. "Extraction of Bunkering Services from Automatic Identification System Data and Their International Comparisons," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    2. Steenari, Jussi & Lwakatare, Lucy Ellen & Nurminen, Jukka & Talonen, Jaakko & Manderbacka, Teemu, 2022. "Mining port operation information from AIS data," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 657-678, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ying & Yeo, Gi-Tae & Ng, Adolf K.Y., 2014. "Choosing optimal bunkering ports for liner shipping companies: A hybrid Fuzzy-Delphi–TOPSIS approach," Transport Policy, Elsevier, vol. 35(C), pages 358-365.
    2. Tan, Roy & Duru, Okan & Thepsithar, Prapisala, 2020. "Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Bai, Xiwen & Hou, Yao & Yang, Dong, 2021. "Choose clean energy or green technology? Empirical evidence from global ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    4. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    5. Prochazka, Vít & Adland, Roar & Wolff, François-Charles, 2019. "Contracting decisions in the crude oil transportation market: Evidence from fixtures matched with AIS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 37-53.
    6. Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    7. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    8. Bin Yu & Zixuan Peng & Zhihui Tian & Baozhen Yao, 2019. "Sailing speed optimization for tramp ships with fuzzy time window," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 308-330, June.
    9. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    10. Yang, Dong & Wu, Lingxiao & Wang, Shuaian, 2021. "Can we trust the AIS destination port information for bulk ships?–Implications for shipping policy and practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    11. Kazemi, Ahmad & Ernst, Andreas T. & Krishnamoorthy, Mohan & Le Bodic, Pierre, 2021. "Locomotive fuel management with inline refueling," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1077-1096.
    12. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    13. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    14. Ali Cheaitou & Pierre Cariou, 2019. "Greening of maritime transportation: a multi-objective optimization approach," Annals of Operations Research, Springer, vol. 273(1), pages 501-525, February.
    15. Mallidis, Ioannis & Iakovou, Eleftherios & Dekker, Rommert & Vlachos, Dimitrios, 2018. "The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 18-39.
    16. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    17. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    18. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    19. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2017. "Optimization in liner shipping," 4OR, Springer, vol. 15(1), pages 1-35, March.
    20. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:155:y:2021:i:c:s136655452100257x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.