IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v154y2021ics1366554521002209.html
   My bibliography  Save this article

Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen

Author

Listed:
  • Gu, Yewen
  • Wallace, Stein W.

Abstract

Although the technology of autonomous vessels has developed rapidly in the past decade, the literature on the effects of this new technology on logistics and transportation is limited. Particularly, the potential operational changes brought by the autonomy of vessels are not discussed. Besides savings on crew, other benefits of autonomy, especially from an operational perspective, remain unclear. On the other hand, countries like Norway are facing significant challenges in their urban and rural logistics. The land-based public transportation system cannot efficiently serve the demands, especially for areas isolated or separated by fjords or rivers. Water-based transportation systems are thus very attractive, and autonomy makes such systems economically more viable. In this paper we focus on a potential case of autonomous water-taxis in Bergen, Norway. First, we identify the major operational differences, from a logistics perspective, between conventional manned water-taxis and autonomous ones. Then a mixed integer linear programming model is developed to tackle the facility location, fleet allocation and routing decisions in the daily operations of a water-taxi business. The model in this paper is used to analyse the problem, rather than designed for direct use during implementation. In the computational study, different cases with either conventional or autonomous water-taxis are tested. The results show that autonomy can lead to substantial savings on travelled distance due to number and locations of parking terminals being feasible only for autonomous systems.

Suggested Citation

  • Gu, Yewen & Wallace, Stein W., 2021. "Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:transe:v:154:y:2021:i:c:s1366554521002209
    DOI: 10.1016/j.tre.2021.102456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521002209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melkote, Sanjay & Daskin, Mark S., 2001. "An integrated model of facility location and transportation network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 515-538, July.
    2. Cheung, Kam-Fung & Bell, Michael G.H. & Bhattacharjya, Jyotirmoyee, 2021. "Cybersecurity in logistics and supply chain management: An overview and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    3. Bulhões, Teobaldo & Subramanian, Anand & Erdoğan, Güneş & Laporte, Gilbert, 2018. "The static bike relocation problem with multiple vehicles and visits," European Journal of Operational Research, Elsevier, vol. 264(2), pages 508-523.
    4. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    5. Liang, Xiao & Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 115-129.
    6. Abe, Ryosuke, 2019. "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 94-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Tarkowski & Krystian Puzdrakiewicz, 2021. "Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland)," Sustainability, MDPI, vol. 13(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    2. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    4. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    5. Casavant, Ken & Jessup, Eric, 2005. "What Makes them Viable? Determining the Attributes that Offer Potential Viability to Inter-Modal Truck-Rail Facilities in Washington State," 46th Annual Transportation Research Forum, Washington, D.C., March 6-8, 2005 208221, Transportation Research Forum.
    6. Peterson, Steven, 2005. "Factors Influencing Inter-Modal Facility Location Decisions: Comparison of Different Empirical Estimation Procedures," 46th Annual Transportation Research Forum, Washington, D.C., March 6-8, 2005 208177, Transportation Research Forum.
    7. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    8. Matthias Winkenbach & Alain Roset & Stefan Spinler, 2016. "Strategic Redesign of Urban Mail and Parcel Networks at La Poste," Interfaces, INFORMS, vol. 46(5), pages 445-458, October.
    9. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    10. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    12. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    13. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    14. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    15. M. Eugenia López-Lambas & Andrea Alonso, 2019. "The Driverless Bus: An Analysis of Public Perceptions and Acceptability," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    16. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    17. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    18. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    19. Fink, Alexander A. & Klöckner, Maximilian & Räder, Tobias & Wagner, Stephan M., 2022. "Supply chain management accelerators: Types, objectives, and key design features," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Alvarez, Jose A. Lopez & Buijs, Paul & Deluster, Rogier & Coelho, Leandro C. & Ursavas, Evrim, 2020. "Strategic and operational decision-making in expanding supply chains for LNG as a fuel," Omega, Elsevier, vol. 97(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:154:y:2021:i:c:s1366554521002209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.