IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v94y2016icp378-386.html
   My bibliography  Save this article

Robust models for transportation service network design

Author

Listed:
  • Ng, ManWo
  • Lo, Hong K.

Abstract

In this paper robust models are presented for the transportation service network design problem, using the ferry service network design problem as an example application. The base assumption is that only the mean and an upper bound on the passenger demand are known. In one robust model, this information is supplemented by a lower bound on the demand, whereas in a second robust model, the assumption is made that the variance of the demand is known, in addition to the mean and upper bound. The relationship between the two models is investigated and characterized analytically. A case study using the ferry service in Hong Kong is provided to illustrate the models.

Suggested Citation

  • Ng, ManWo & Lo, Hong K., 2016. "Robust models for transportation service network design," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 378-386.
  • Handle: RePEc:eee:transb:v:94:y:2016:i:c:p:378-386
    DOI: 10.1016/j.trb.2016.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516303812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    2. Lai, M. F. & Lo, Hong K., 2004. "Ferry service network design: optimal fleet size, routing, and scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 305-328, May.
    3. Wang, Shuaian, 2013. "Essential elements in tactical planning models for container liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 84-99.
    4. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    5. Meng, Qiang & Wang, Shuaian, 2011. "Liner shipping service network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 695-708, September.
    6. An, Kun & Lo, Hong K., 2014. "Ferry service network design with stochastic demand under user equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 70-89.
    7. Lo, Hong K. & An, Kun & Lin, Wei-hua, 2013. "Ferry service network design under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 48-70.
    8. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    9. Li, Ming & Wang, Zheng & Chan, Felix T.S., 2016. "A robust inventory routing policy under inventory inaccuracy and replenishment lead-time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 290-305.
    10. Ng, ManWo & Waller, S. Travis, 2010. "Reliable evacuation planning via demand inflation and supply deflation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1086-1094, November.
    11. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
    12. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    13. Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
    14. Wang, David Z.W. & Lo, Hong K., 2008. "Multi-fleet ferry service network design with passenger preferences for differential services," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 798-822, November.
    15. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    16. Fischer, Andreas & Nokhart, Håkon & Olsen, Henrik & Fagerholt, Kjetil & Rakke, Jørgen Glomvik & Stålhane, Magnus, 2016. "Robust planning and disruption management in roll-on roll-off liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 51-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    2. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    3. Aslaksen, Ingvild Eide & Svanberg, Elisabeth & Fagerholt, Kjetil & Johnsen, Lennart C. & Meisel, Frank, 2021. "A combined dial-a-ride and fixed schedule ferry service for coastal cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 306-325.
    4. Tawfik, Christine & Gendron, Bernard & Limbourg, Sabine, 2022. "An iterative two-stage heuristic algorithm for a bilevel service network design and pricing model," European Journal of Operational Research, Elsevier, vol. 300(2), pages 512-526.
    5. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    6. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.
    7. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2019. "The price of discretizing time: a study in service network design," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 195-216, June.
    8. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    9. Fialkoff, Marc R. & Omitaomu, Olufemi A. & Peterson, Steven K. & Tuttle, Mark A., 2017. "Using geographic information science to evaluate legal restrictions on freight transportation routing in disruptive scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 17(C), pages 60-74.
    10. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    11. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    12. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bell, Michael G.H. & Pan, Jing-Jing & Teye, Collins & Cheung, Kam-Fung & Perera, Supun, 2020. "An entropy maximizing approach to the ferry network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 15-28.
    2. Lo, Hong K. & An, Kun & Lin, Wei-hua, 2013. "Ferry service network design under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 48-70.
    3. Aslaksen, Ingvild Eide & Svanberg, Elisabeth & Fagerholt, Kjetil & Johnsen, Lennart C. & Meisel, Frank, 2021. "A combined dial-a-ride and fixed schedule ferry service for coastal cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 306-325.
    4. An, Kun & Lo, Hong K., 2014. "Ferry service network design with stochastic demand under user equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 70-89.
    5. Škurić, Maja & Maraš, Vladislav & Davidović, Tatjana & Radonjić, Aleksandar, 2021. "Optimal allocating and sizing of passenger ferry fleet in maritime transport," Research in Transportation Economics, Elsevier, vol. 90(C).
    6. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    8. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    9. An, Kun & Lo, Hong K., 2015. "Robust transit network design with stochastic demand considering development density," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 737-754.
    10. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    11. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    12. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    13. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Alaa Abdelshafie & May Salah & Tomaž Kramberger & Dejan Dragan, 2022. "Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    15. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    16. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    17. Tobias Buer & Rasmus Haass, 2018. "Cooperative liner shipping network design by means of a combinatorial auction," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 686-711, December.
    18. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    19. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    20. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:94:y:2016:i:c:p:378-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.