IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i2p169-185.html
   My bibliography  Save this article

Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion

Author

Listed:
  • Ceylan, Halim
  • Bell, Michael G. H.

Abstract

A bi-level and mutually consistent (MC) programming techniques have previously been proposed, in which an area traffic control problem (ATC) is dealt with as upper-level problem whilst the users' equilibrium traffic assignment is dealt with as lower-level problem. In this study, genetic algorithm (GA) approach has been proposed to solve upper-level problem for a signalized road network under congestion. Stochastic user equilibrium (SUE) traffic assignment is applied at the lower-level. At the upper-level, GA provides a feasible set of signal timings within specified lower and upper bounds on signal timing variables and feeds into lower-level problem. The SUE assignment is solved by way of Path Flow Estimator (PFE) and TRANSYT traffic model is applied at upper-level to obtain network performance index (PI) and hence fitness index. Network performance index is defined as the sum of a weighted linear combination of delay and number of stops per unit time under various levels of traffic loads. For this purpose, the genetic optimizer, referred to as GATRANSPFE, combines the TRANSYT model, used to estimate performance, with the PFE logit assignment tool, used to predict traffic reassignment, is developed. The GATRANSPFE that can solve the ATC and SUE traffic assignment problem has been applied to the signalized road networks under congestion. The effectiveness of the GATRANSPFE over the MC method has been investigated in terms of good values of network performance index and convergence. Comparisons of the performance index resulting from the GATRANSPFE and that of mutually consistent TRANSYT-optimal signal settings and SUE traffic flows are made.

Suggested Citation

  • Ceylan, Halim & Bell, Michael G. H., 2005. "Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 169-185, February.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:2:p:169-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00046-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Chiou, Suh-Wen, 2003. "TRANSYT derivatives for area traffic control optimisation with network equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 263-290, March.
    3. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    4. Ceylan, Halim & Bell, Michael G. H., 2004. "Traffic signal timing optimisation based on genetic algorithm approach, including drivers' routing," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 329-342, May.
    5. Dickson, Thomas J., 1981. "A note on traffic assignment and signal timings in a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 15(4), pages 267-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Ting & Wei, Heng & Liu, Hao & Yang, Y. Jeffrey, 2019. "Bi-level optimization approach for configuring population and employment distributions with minimized vehicle travel demand," Journal of Transport Geography, Elsevier, vol. 74(C), pages 161-172.
    2. Haldenbilen, Soner & Ceylan, Halim, 2005. "The development of a policy for road tax in Turkey, using a genetic algorithm approach for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(10), pages 861-877, December.
    3. Shen, Yindong & Peng, Kunkun & Chen, Kai & Li, Jingpeng, 2013. "Evolutionary crew scheduling with adaptive chromosomes," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 174-185.
    4. Xiaoyan Jia & Ruichun He & Chunmin Zhang & Huo Chai, 2018. "A Bi-Level Programming Model of Liquefied Petroleum Gas Transportation Operation for Urban Road Network by Period-Security," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    5. Long, Jiancheng & Gao, Ziyou & Zhang, Haozhi & Szeto, W.Y., 2010. "A turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 206(3), pages 569-578, November.
    6. Caixia Li & Sreenatha Gopalarao Anavatti & Tapabrata Ray, 2017. "A Path-Based Solution Algorithm for Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 17(3), pages 841-860, September.
    7. Ozan, Cenk & Haldenbilen, Soner & Ceylan, Halim, 2011. "Estimating emissions on vehicular traffic based on projected energy and transport demand on rural roads: Policies for reducing air pollutant emissions and energy consumption," Energy Policy, Elsevier, vol. 39(5), pages 2542-2549, May.
    8. Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
    9. Cruz, F.R.B. & van Woensel, T. & MacGregor Smith, J. & Lieckens, K., 2010. "On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks," European Journal of Operational Research, Elsevier, vol. 201(1), pages 183-193, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    2. Guo, Jianhua & Kong, Ye & Li, Zongzhi & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "A model and genetic algorithm for area-wide intersection signal optimization under user equilibrium traffic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 92-104.
    3. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    4. Evers, Ruth & Proost, Stef, 2015. "Optimizing intersections," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 100-119.
    5. Ceylan, Halim & Bell, Michael G. H., 2004. "Traffic signal timing optimisation based on genetic algorithm approach, including drivers' routing," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 329-342, May.
    6. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    7. Evers, Ruth & Proost, Stef, 2015. "The myth of traffic-responsive signal control: Why common sense does not always make sense," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 350-357.
    8. Claudio Meneguzzer, 1998. "Stochastic user equilibrium assignment with traffic-responsive signal control," ERSA conference papers ersa98p337, European Regional Science Association.
    9. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
    10. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
    11. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    12. Ghatee, Mehdi & Hashemi, S. Mehdi, 2009. "Traffic assignment model with fuzzy level of travel demand: An efficient algorithm based on quasi-Logit formulas," European Journal of Operational Research, Elsevier, vol. 194(2), pages 432-451, April.
    13. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    14. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    15. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    16. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    17. Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
    18. A. Assaf, 2011. "Accounting for technological differences in modelling the performance of airports: a Bayesian approach," Applied Economics, Taylor & Francis Journals, vol. 43(18), pages 2267-2275.
    19. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    20. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:2:p:169-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.