IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v36y2002i7p577-592.html
   My bibliography  Save this article

A model of route perception in urban road networks

Author

Listed:
  • Cascetta, Ennio
  • Russo, Francesco
  • Viola, Francesco A.
  • Vitetta, Antonino

Abstract

ATIS and new technologies are attracting increasing attention towards understanding and modeling the behavior underlying drivers' route choice. The new approach to route choice modeling is also having a significant impact on network assignment models, traditionally based on simple hypotheses of route choice. Models based on explicit route enumeration, allowing more realistic behavioral assumptions, were recently proposed E. Cascetta, F. Russo, A. Vitetta [Preprint of the Eighth IFAC Symposium on Transportation Systems, Chania, Greece, 1997]. Random utility has been the standard theoretical framework for explicit models of route choice C.F. Daganzo, Y. Sheffi [Transp. Sci. 11 (1982) 253-274], M. Ben-Akiva, M.J. Bergman, A.J. Daly, R. Ramaswamy [Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, VNU Science Press, 1984], E. Cascetta, A. Nuzzolo, F. Russo, A. Vitetta [Proceedings of the ISTTT Conference, Lyon, France, 1996]. Random utility models are based on two conceptual steps: identification of available alternatives (choice set) and choice from a given choice set (specification of systematic utility and functional form). The first step is particularly relevant in route choice where several paths are, in principle, available in the network, and many empirical studies M. Ben-Akiva, M.J. Bergman, A.J. Daly, R. Ramaswamy [loc. cit.], E. Cascetta, A. Nuzzolo, F. Russo, A. Vitetta [loc. cit.], F. Russo, A. Vitetta [Proceedings of the Seventh WCTR, Sydney, Australia, 1996], R.G. Golledge [Resource Paper, Preprint 8 IATBR, Austin, Texas, 1997] seem to suggest that only a subset of these are actually perceived by trip makers, i.e., belong to their choice set. While in the literature there are papers dealing with the analysis of route perception in networks from the cognitive point of view R.G. Golledge [Resource Paper, Preprint 8 IATBR, Austin, Texas, 1997], most operational models of path availability/perception in connection with network assignment are implicit and/or indirect. In other words, models of route perception (enumeration) are seldom explicitly specified and, explicit or implicit, are calibrated on indirect information, which is both disaggregated (routes chosen by a sample of drivers) and aggregated (measured flows). This study proposes an operational model explicitly simulating route perception by drivers in an urban network and presents some calibration results based on a sample of routes stated as available/perceived by students and university workers in the city of Reggio Calabria. The results seem to confirm that few routes are actually perceived as feasible alternatives and that topological, level of service and socio-economic attributes influence users' perception. The model could be integrated within a route choice simulation procedure in network assignment models.

Suggested Citation

  • Cascetta, Ennio & Russo, Francesco & Viola, Francesco A. & Vitetta, Antonino, 2002. "A model of route perception in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 577-592, August.
  • Handle: RePEc:eee:transb:v:36:y:2002:i:7:p:577-592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00041-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williams, H. C. W. L. & Ortuzar, J. D., 1982. "Behavioural theories of dispersion and the mis-specification of travel demand models," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 167-219, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    2. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    3. Shanjiang Zhu & David Levinson, 2015. "Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    4. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    5. Manley, E.J. & Addison, J.D. & Cheng, T., 2015. "Shortest path or anchor-based route choice: a large-scale empirical analysis of minicab routing in London," Journal of Transport Geography, Elsevier, vol. 43(C), pages 123-139.
    6. Chen, Anthony & Pravinvongvuth, Surachet & Xu, Xiangdong & Ryu, Seungkyu & Chootinan, Piya, 2012. "Examining the scaling effect and overlapping problem in logit-based stochastic user equilibrium models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1343-1358.
    7. Gao, Ge & Sun, Huijun & Wu, Jianjun & Liu, Xinmin & Chen, Weiya, 2018. "Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city," Transport Policy, Elsevier, vol. 68(C), pages 1-12.
    8. Kitthamkesorn, Songyot & Chen, Anthony, 2013. "A path-size weibit stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 378-397.
    9. Quattrone, Agata & Vitetta, Antonino, 2011. "Random and fuzzy utility models for road route choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1126-1139.
    10. Meng, Qiang & Liu, Zhiyuan & Wang, Shuaian, 2012. "Optimal distance tolls under congestion pricing and continuously distributed value of time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 937-957.
    11. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    12. Loukas Dimitriou & Theodore Tsekeris & Antony Stathopoulos, 2009. "Joint pricing and design of urban highways with spatial and user group heterogeneity," Netnomics, Springer, vol. 10(1), pages 141-160, April.
    13. Papinski, Dominik & Scott, Darren M., 2011. "A GIS-based toolkit for route choice analysis," Journal of Transport Geography, Elsevier, vol. 19(3), pages 434-442.
    14. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    2. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    3. Cantillo, Víctor & Heydecker, Benjamin & de Dios Ortúzar, Juan, 2006. "A discrete choice model incorporating thresholds for perception in attribute values," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 807-825, November.
    4. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    5. Koppelman, Frank S. & Sethi, Vaneet, 2005. "Incorporating variance and covariance heterogeneity in the Generalized Nested Logit model: an application to modeling long distance travel choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 825-853, November.
    6. GRAMMIG, Joachim & HUJER, Reinhard & SCHEIDLER, Michael, 2001. "The econometrics of airline network management," LIDAM Discussion Papers CORE 2001055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Chorus, Caspar G. & Arentze, Theo A. & Molin, Eric J.E. & Timmermans, Harry J.P. & Van Wee, Bert, 2006. "The value of travel information: Decision strategy-specific conceptualizations and numerical examples," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 504-519, July.
    9. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    10. Zhou, Yong-Wu & Lin, Xiaogang & Zhong, Yuanguang & Xie, Wei, 2019. "Contract selection for a multi-service sharing platform with self-scheduling capacity," Omega, Elsevier, vol. 86(C), pages 198-217.
    11. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2023. "Probabilistic choice set formation incorporating activity spaces into the context of mode and destination choice modelling," Journal of Transport Geography, Elsevier, vol. 108(C).
    12. Gonzalez-Valdes, Felipe & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2022. "Quantifying behavioural difference in latent class models to assess empirical identifiability: Analytical development and application to multiple heuristics," Journal of choice modelling, Elsevier, vol. 43(C).
    13. Ortúzar, Juan de Dios, 2001. "On the development of the nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 213-216, February.
    14. Cantillo, Víctor & Ortúzar, Juan de Dios, 2005. "A semi-compensatory discrete choice model with explicit attribute thresholds of perception," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 641-657, August.
    15. Bhat, Chandra R., 2015. "A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 161-188.
    16. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    17. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    18. Díez-Gutiérrez, María & Babri, Sahar, 2020. "Explanatory variables underlying the route choice decisions of tourists: The case of Geiranger Fjord in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 398-409.
    19. Bahamonde-Birke, Francisco J. & Ortúzar, Juan de Dios, 2017. "Analyzing the continuity of attitudinal and perceptual indicators in hybrid choice models," Journal of choice modelling, Elsevier, vol. 25(C), pages 28-39.
    20. Francisco J. Bahamonde-Birke & Juan de Dios Ortúzar, 2015. "Analyzing the Continuity of Attitudinal and Perceptional Indicators in Hybrid Choice Models," Discussion Papers of DIW Berlin 1528, DIW Berlin, German Institute for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:36:y:2002:i:7:p:577-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.