IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v147y2021icp197-219.html
   My bibliography  Save this article

Optimal rebalancing and on-board charging of shared electric scooters

Author

Listed:
  • Osorio, Jesus
  • Lei, Chao
  • Ouyang, Yanfeng

Abstract

This paper presents a sequence of models for optimal overnight charging and rebalancing of shared electric scooters (e-scooters) by allowing e-scooters to be charged while being transported on rebalancing vehicles. This problem is first modeled as a mixed-integer program for the multi-commodity inventory routing problem, where commodities represent e-scooters with different states of charge. To avoid prohibitive computation burden, continuous approximation techniques are proposed to estimate costs associated with the pickup and drop-off operations in small local neighborhoods, and the formulation turns into a discrete-continuous hybrid model for the integrated operations at both local and line-haul levels. A series of numerical experiments are conducted to demonstrate that, as compared to direct application of the discrete formulation, the proposed hybrid approach can produce good quality solutions for large-scale instances in a much shorter computation time.

Suggested Citation

  • Osorio, Jesus & Lei, Chao & Ouyang, Yanfeng, 2021. "Optimal rebalancing and on-board charging of shared electric scooters," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 197-219.
  • Handle: RePEc:eee:transb:v:147:y:2021:i:c:p:197-219
    DOI: 10.1016/j.trb.2021.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    2. Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Peter M. Kort & Andrea Seidl (ed.), 2016. "Dynamic Perspectives on Managerial Decision Making," Dynamic Modeling and Econometrics in Economics and Finance, Springer, number 978-3-319-39120-5, July-Dece.
    3. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    4. Hall, Randolph W., 1985. "Determining vehicle dispatch frequency when shipping frequency differs among suppliers," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 421-431, October.
    5. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    6. Gambella, Claudio & Malaguti, Enrico & Masini, Filippo & Vigo, Daniele, 2018. "Optimizing relocation operations in electric car-sharing," Omega, Elsevier, vol. 81(C), pages 234-245.
    7. McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
    8. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    9. Georg Brandstätter & Claudio Gambella & Markus Leitner & Enrico Malaguti & Filippo Masini & Jakob Puchinger & Mario Ruthmair & Daniele Vigo, 2016. "Overview of Optimization Problems in Electric Car-Sharing System Design and Management," Dynamic Modeling and Econometrics in Economics and Finance, in: Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Peter M. Kort & Andrea Seidl (ed.), Dynamic Perspectives on Managerial Decision Making, pages 441-471, Springer.
    10. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. & Srivathsan, Sandeep, 2017. "A time-space network flow approach to dynamic repositioning in bicycle sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 188-207.
    11. Ho, Sin C. & Szeto, W.Y., 2014. "Solving a static repositioning problem in bike-sharing systems using iterated tabu search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 180-198.
    12. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    13. Newell, Gordon F. & Daganzo, Carlos F., 1986. "Design of multiple vehicle delivery tours--II other metrics," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 365-376, October.
    14. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, November.
    15. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    16. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    17. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    18. Ouyang, Yanfeng, 2007. "Design of vehicle routing zones for large-scale distribution systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1079-1093, December.
    19. Ho, Sin C. & Szeto, W.Y., 2017. "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 340-363.
    20. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    21. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    22. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    23. Erdoğan, Güneş & Battarra, Maria & Wolfler Calvo, Roberto, 2015. "An exact algorithm for the static rebalancing problem arising in bicycle sharing systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 667-679.
    24. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    25. Max Shen, Zuo-Jun & Qi, Lian, 2007. "Incorporating inventory and routing costs in strategic location models," European Journal of Operational Research, Elsevier, vol. 179(2), pages 372-389, June.
    26. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    27. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    28. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Yanfeng & Yang, Haolin, 2023. "Measurement and mitigation of the “wild goose chase” phenomenon in taxi services," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 217-234.
    2. Zhu, Rui & Kondor, Dániel & Cheng, Cheng & Zhang, Xiaohu & Santi, Paolo & Wong, Man Sing & Ratti, Carlo, 2022. "Solar photovoltaic generation for charging shared electric scooters," Applied Energy, Elsevier, vol. 313(C).
    3. Belma Turan & Tina Wakolbinger, 2023. "The Electric Scooter Collection Problem: A Case Study in the City of Vienna," Sustainability, MDPI, vol. 15(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    2. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2022. "A two-echelon fuzzy clustering based heuristic for large-scale bike sharing repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 54-75.
    3. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    5. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    6. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    7. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    8. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    9. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    10. Bahman Lahoorpoor & Hamed Faroqi & Abolghasem Sadeghi-Niaraki & Soo-Mi Choi, 2019. "Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem," Sustainability, MDPI, vol. 11(11), pages 1-21, June.
    11. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    12. Li, Yanfeng & Liu, Yang, 2021. "The static bike rebalancing problem with optimal user incentives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    13. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. & Srivathsan, Sandeep, 2017. "A time-space network flow approach to dynamic repositioning in bicycle sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 188-207.
    14. Liang Gao & Wei Xu & Yifeng Duan, 2019. "Dynamic Scheduling Based on Predicted Inventory Variation Rate for Public Bicycle System," Sustainability, MDPI, vol. 11(7), pages 1-11, March.
    15. Ye Ding & Jiantong Zhang & Jiaqing Sun, 2022. "Branch-and-Price-and-Cut for the Heterogeneous Fleet and Multi-Depot Static Bike Rebalancing Problem with Split Load," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    16. Chang, Ximing & Wu, Jianjun & Sun, Huijun & Correia, Gonçalo Homem de Almeida & Chen, Jianhua, 2021. "Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 235-260.
    17. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    18. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    19. Wang, Xu & Sun, Huijun & Zhang, Si & Lv, Ying & Li, Tongfei, 2022. "Bike sharing rebalancing problem with variable demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    20. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:147:y:2021:i:c:p:197-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.