IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp45-61.html
   My bibliography  Save this article

Applying spatial-temporal analysis and retail location theory to public bikes site selection in Taipei

Author

Listed:
  • Wang, Jenhung
  • Tsai, Ching-Hui
  • Lin, Pei-Chun

Abstract

In order to turn Taipei into a sustainable, green metropolis, in 2009, the Department of Transportation of Taipei City Government launched a public bike rental system (YouBike) to meet people’s daily commute and/or leisure needs. Given that users may return bikes to sites differing from their starting locations, rental stations frequently lack bikes or bike racks. This study sought to identify lacking-bike and/or lacking-bike rack hot spots utilizing spatial-temporal analysis. In addition, it applied retail location theory to determine site selection of further rental stations. Historical data indicated that shortage of bikes was much more severe than shortage of bike racks in the YouBike public bike system and lacking-bike and lacking-bike rack hot spots were clustered significantly. The study demonstrated that spatial-temporal analysis can be used to effectively identify rental stations’ spatial patterns, determine the most suitable locations for further installation of rental stations, help to provide public bike users with a more effective rental system, and greatly assist public bikes’ operational management and decision-making in Taiwan.

Suggested Citation

  • Wang, Jenhung & Tsai, Ching-Hui & Lin, Pei-Chun, 2016. "Applying spatial-temporal analysis and retail location theory to public bikes site selection in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 45-61.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:45-61
    DOI: 10.1016/j.tra.2016.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416304347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    2. Habib, Khandker Nurul & Mann, Jenessa & Mahmoud, Mohamed & Weiss, Adam, 2014. "Synopsis of bicycle demand in the City of Toronto: Investigating the effects of perception, consciousness and comfortability on the purpose of biking and bike ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 67-80.
    3. Rafael Maldonado-Hinarejos & Aruna Sivakumar & John Polak, 2014. "Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach," Transportation, Springer, vol. 41(6), pages 1287-1304, November.
    4. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    5. Coro Chasco Yrigoyen & Jose Vicens Otero, 1998. "Spatial interaction models applied to the design of retail trade areas," ERSA conference papers ersa98p81, European Regional Science Association.
    6. Sallis, James F. & Frank, Lawrence D. & Saelens, Brian E. & Kraft, M. Katherine, 2004. "Active transportation and physical activity: opportunities for collaboration on transportation and public health research," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 249-268, May.
    7. Jia Shu & Mabel C. Chou & Qizhang Liu & Chung-Piaw Teo & I-Lin Wang, 2013. "Models for Effective Deployment and Redistribution of Bicycles Within Public Bicycle-Sharing Systems," Operations Research, INFORMS, vol. 61(6), pages 1346-1359, December.
    8. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    9. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    10. David L. Huff, 1963. "A Probabilistic Analysis of Shopping Center Trade Areas," Land Economics, University of Wisconsin Press, vol. 39(1), pages 81-90.
    11. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Jung Chang & Chia-Li Lin, 2023. "Determining the Sustainable Development Strategies and Adoption Paths for Public Bike-Sharing Service Systems (PBSSSs) under Various Users’ Considerations," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    2. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    4. Jiayu Bao & Guojun Chen & Zhenghua Liu, 2023. "Exploring the Influence of Parking Penalties on Bike-Sharing System with Willingness Constraints: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    5. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "Measuring immediate impacts of a new mass transit system on an existing bike-share system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 20-39.
    6. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2019. "Utilizing multi-stage behavior change theory to model the process of bike share adoption," Transport Policy, Elsevier, vol. 77(C), pages 30-45.
    7. Han, Shuihua & Jia, Xinyun & Chen, Xinming & Gupta, Shivam & Kumar, Ajay & Lin, Zhibin, 2022. "Search well and be wise: A machine learning approach to search for a profitable location," Journal of Business Research, Elsevier, vol. 144(C), pages 416-427.
    8. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    9. Qian, Xiaodong & Jaller, Miguel & Circella, Giovanni, 2022. "Equitable distribution of bikeshare stations: An optimization approach," Journal of Transport Geography, Elsevier, vol. 98(C).
    10. Jaller, Miguel & Qian, Xiaodong & Joby, Raina & Xiao, Runhua Ivan, 2023. "Optimizing Bikeshare Service to Connect Affordable Housing Units with Transit Service," Institute of Transportation Studies, Working Paper Series qt9mp4g0xz, Institute of Transportation Studies, UC Davis.
    11. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.
    2. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    3. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    4. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    6. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    7. Park, Chung & Sohn, So Young, 2017. "An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 154-166.
    8. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    9. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2019. "Utilizing multi-stage behavior change theory to model the process of bike share adoption," Transport Policy, Elsevier, vol. 77(C), pages 30-45.
    10. Duran-Rodas, David & Villeneuve, Dominic & Pereira, Francisco C. & Wulfhorst, Gebhard, 2020. "How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 299-319.
    11. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    12. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    13. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    14. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    15. Zhiwei Chen & Yucong Hu & Jutint Li & Xing Wu, 2020. "Optimal Deployment of Electric Bicycle Sharing Stations: Model Formulation and Solution Technique," Networks and Spatial Economics, Springer, vol. 20(1), pages 99-136, March.
    16. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    17. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    18. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    19. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    20. Kaspi, Mor & Raviv, Tal & Tzur, Michal & Galili, Hila, 2016. "Regulating vehicle sharing systems through parking reservation policies: Analysis and performance bounds," European Journal of Operational Research, Elsevier, vol. 251(3), pages 969-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:45-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.