IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v78y2015icp187-199.html
   My bibliography  Save this article

Empirical distributions of vehicle use and fuel efficiency across space: Implications of asymmetry for measuring policy incidence

Author

Listed:
  • Cook, Jonathan A.
  • Sanchirico, James N.
  • Salon, Deborah
  • Williams, Jeffrey

Abstract

Concerns about local air pollution and climate change have prompted all levels of government to consider a variety of policies to reduce vehicle dependence and fuel consumption, as the transportation sector is one of the largest sources of local and global emissions. Because many of the policy options under consideration are market-based (e.g., gasoline tax, carbon tax), it is important to consider how the impacts would vary across space and affect different subpopulations. Evaluating incidence is relevant for both the expected costs and benefits of a particular policy, however detailed data on vehicle-miles traveled (VMT) and fuel consumption allowing for the distributions of these variables to be estimated at a fine geographic scale is rarely available. This paper uses a unique dataset with more than 20million vehicles in California to derive estimates of VMT and fuel consumption in order to examine the spatial distribution of impacts for an increase in the price of gasoline as well as the consequences of using different statistics for policy evaluation. Results show that VMT and fuel consumption distributions are not symmetrically distributed and vary significantly within transportation planning regions. To understand the potential implications of this asymmetry, we do a back of the envelope comparison using the mean and mode of the VMT or fuel consumption distribution for policy analysis. We find that assuming a symmetric distribution can lead to a divergence of 20–40% from the estimates based on the empirical distribution. Our results, therefore, introduce caution in interpreting the incidence of policies targeting the transportation sector based on averages.

Suggested Citation

  • Cook, Jonathan A. & Sanchirico, James N. & Salon, Deborah & Williams, Jeffrey, 2015. "Empirical distributions of vehicle use and fuel efficiency across space: Implications of asymmetry for measuring policy incidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 187-199.
  • Handle: RePEc:eee:transa:v:78:y:2015:i:c:p:187-199
    DOI: 10.1016/j.tra.2015.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubin, Robin A, 1988. "Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 466-474, August.
    2. Lin, C.-Y. Cynthia & Prince, Lea, 2009. "The optimal gas tax for California," Energy Policy, Elsevier, vol. 37(12), pages 5173-5183, December.
    3. Anas, Alex & Hiramatsu, Tomoru, 2012. "The effect of the price of gasoline on the urban economy: From route choice to general equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 855-873.
    4. Christopher R. Knittel, 2012. "Reducing Petroleum Consumption from Transportation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 93-118, Winter.
    5. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    6. Yang, Christopher & McCollum, David L & McCarthy, Ryan & Leighty, Wayne, 2009. "Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California," Institute of Transportation Studies, Working Paper Series qt2ns1q98f, Institute of Transportation Studies, UC Davis.
    7. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    8. Handy, Susan, 1993. "Regional Versus Local Accessibility: Implications for Nonwork Travel," University of California Transportation Center, Working Papers qt2z79q67d, University of California Transportation Center.
    9. Corbett Grainger & Charles Kolstad, 2010. "Who Pays a Price on Carbon?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(3), pages 359-376, July.
    10. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    11. Sarah E. West & Roberton C. Williams III, 2005. "The Cost of Reducing Gasoline Consumption," American Economic Review, American Economic Association, vol. 95(2), pages 294-299, May.
    12. Stopher, Peter R. & Greaves, Stephen P., 2007. "Household travel surveys: Where are we going?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 367-381, June.
    13. Ian W. H. Parry & Margaret Walls & Winston Harrington, 2007. "Automobile Externalities and Policies," Journal of Economic Literature, American Economic Association, vol. 45(2), pages 373-399, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    2. Hirte, Georg & Tscharaktschiew, Stefan, 2018. "The impact of anti-congestion policies and the role of labor-supply margins," CEPIE Working Papers 04/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    3. Lucas W. Davis, 2017. "The Environmental Cost of Global Fuel Subsidies," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    4. James M. Sallee, 2019. "Pigou Creates Losers: On the Implausibility of Achieving Pareto Improvements from Efficiency-Enhancing Policies," NBER Working Papers 25831, National Bureau of Economic Research, Inc.
    5. Lucas W. Davis, 2014. "The Economic Cost of Global Fuel Subsidies," American Economic Review, American Economic Association, vol. 104(5), pages 581-585, May.
    6. Lucas W. Davis & James M. Sallee, 2020. "Should Electric Vehicle Drivers Pay a Mileage Tax?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 65-94.
    7. Finn Roar Aune & Ann Christin Bøeng & Snorre Kverndokk & Lars Lindholt & Knut Einar Rosendahl, 2017. "Fuel Efficiency Improvements: Feedback Mechanisms and Distributional Effects in the Oil Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 15-45, September.
    8. David Anthoff & Robert Hahn, 2010. "Government failure and market failure: on the inefficiency of environmental and energy policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 197-224, Summer.
    9. Georg Hirte & Stefan Tscharaktschiew, 2015. "Why not to choose the most convenient labor supply model? The impact of labor supply modeling on policy evaluation," ERSA conference papers ersa15p303, European Regional Science Association.
    10. Georg Hirte & Stefan Tscharaktschiew, 2015. "Optimal Fuel Taxes and Heterogeneity of Cities," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 35(2), pages 173-209, October.
    11. Tscharaktschiew, Stefan, 2020. "Why are highway speed limits really justified? An equilibrium speed choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 317-351.
    12. Shanjun Li & Christopher Timmins & Roger H. von Haefen, 2009. "How Do Gasoline Prices Affect Fleet Fuel Economy?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(2), pages 113-137, August.
    13. Jesús Rodríguez-López & Gustavo A. Marrero & Rosa Marina González-Marrero, 2015. "Dieselization, CO2 emissions and fuel taxes in Europe," Working Papers 15.11, Universidad Pablo de Olavide, Department of Economics.
    14. Gustavo A. Marrero & Jesús Rodríguez-López & Rosa Marina González, 2020. "Car usage, $${\text {CO}}_{2}$$CO2 emissions and fuel taxes in Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(2), pages 203-241, June.
    15. Madowitz, M. & Novan, K., 2013. "Gasoline taxes and revenue volatility: An application to California," Energy Policy, Elsevier, vol. 59(C), pages 663-673.
    16. Santos, Georgina & Behrendt, Hannah & Maconi, Laura & Shirvani, Tara & Teytelboym, Alexander, 2010. "Part I: Externalities and economic policies in road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 2-45.
    17. Hirte, Georg & Tscharaktschiew, Stefan, 2020. "The role of labor-supply margins in shaping optimal transport taxes," Economics of Transportation, Elsevier, vol. 22(C).
    18. Li, Shanjun & Liu, Yanyan & Zhang, Junjie, 2009. "Lose Some, Save Some: Obesity, Automobile Demand, and Gasoline Consumption in the U.S," RFF Working Paper Series dp-09-34, Resources for the Future.
    19. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    20. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:78:y:2015:i:c:p:187-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.