IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp85-98.html
   My bibliography  Save this article

Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization

Author

Listed:
  • Lee, Dasom
  • Hess, David J.

Abstract

Although there is great media attention to connected and automated vehicles (CAVs) and strong public interest in the technology, it is still under development. Their deployment to the broader public will require new regulations and road traffic rules that are also under development, and there is not yet a globally harmonized approach. This paper reviews the main safety and liability issues for CAVs with a focus on the rules developed for on-road testing to date in Australia, the United States, and Germany. It also reviews government policies from Victoria, Australia, and California, the United States, and it provides an appendix on European Union (E.U.) regulations. After a review of similarities and differences regarding safety and liability provisions, the study suggests how the current provisions can be brought together toward a globally harmonized approach to safety issues that builds on best practices in the three countries.

Suggested Citation

  • Lee, Dasom & Hess, David J., 2020. "Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 85-98.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:85-98
    DOI: 10.1016/j.tra.2020.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419308006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheehan, Barry & Murphy, Finbarr & Mullins, Martin & Ryan, Cian, 2019. "Connected and autonomous vehicles: A cyber-risk classification framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 523-536.
    2. Itf, 2018. "Safer Roads with Automated Vehicles?," International Transport Forum Policy Papers 55, OECD Publishing.
    3. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    4. Augusto Medina & Audry Maulana & Douglas Thompson & Nishant Shandilya & Samuel Almeida & Aki Aapaoja & Matti Kutila & Erik Merkus & Koen Vervoort, 2017. "Public Support Measures for Connected and Automated Driving. Competitiveness Report 2017," WIFO Studies, WIFO, number 60539, April.
    5. Fraedrich, Eva & Heinrichs, Dirk & Bahamonde-Birke, Francisco J. & Cyganski, Rita, 2019. "Autonomous driving, the built environment and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 162-172.
    6. Shladover, Steven E. & Nowakowski, Christopher, 2019. "Regulatory challenges for road vehicle automation: Lessons from the California experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 125-133.
    7. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    8. Wil M. P. Aalst & Martin Bichler & Armin Heinzl, 2018. "Robotic Process Automation," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(4), pages 269-272, August.
    9. Hess, David J., 2020. "Incumbent-led transitions and civil society: Autonomous vehicle policy and consumer organizations in the United States," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Hazel Si Min Lim & Araz Taeihagh, 2018. "Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications," Energies, MDPI, vol. 11(5), pages 1-23, April.
    11. Biqing Li & Zhao Li, 2018. "Design Of Automatic Monitoring System For Transfusion ," Acta Electronica Malaysia (AEM), Zibeline International Publishing, vol. 2(1), pages 7-10, August.
    12. Kröger, Lars & Kuhnimhof, Tobias & Trommer, Stefan, 2019. "Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 146-161.
    13. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    14. Straub, Edward R. & Schaefer, Kristin E., 2019. "It takes two to Tango: Automated vehicles and human beings do the dance of driving – Four social considerations for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 173-183.
    15. Xuewei Li & Jinpei Wu & Xueyan Li, 2018. "Theory of Practical Cellular Automaton," Springer Books, Springer, number 978-981-10-7497-4, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hansson, Lisa, 2020. "Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway," Research in Transportation Economics, Elsevier, vol. 83(C).
    2. Nikitas, Alexandros & Parkinson, Simon & Vallati, Mauro, 2022. "The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies," Transport Policy, Elsevier, vol. 122(C), pages 1-10.
    3. Sunbin YOO & KUMAGAI Junya & KAWABATA Yuta & MANAGI Shunsuke, 2022. "Achieving Inclusive Transportation: Fully Automated Vehicles with Social Support," Discussion papers 22017, Research Institute of Economy, Trade and Industry (RIETI).
    4. Mohammad A. R. Abdeen & Ansar Yasar & Mohamed Benaida & Tarek Sheltami & Dimitrios Zavantis & Youssef El-Hansali, 2022. "Evaluating the Impacts of Autonomous Vehicles’ Market Penetration on a Complex Urban Freeway during Autonomous Vehicles’ Transition Period," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    5. Lee, Dasom & Hess, David J. & Heldeweg, Michiel A., 2022. "Safety and privacy regulations for unmanned aerial vehicles: A multiple comparative analysis," Technology in Society, Elsevier, vol. 71(C).
    6. Dasom Lee & David J. Hess, 2022. "Public concerns and connected and automated vehicles: safety, privacy, and data security," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    7. Fei Zhou & Yingqi Liu & Ruijun Chen, 2021. "Research on Collaborative Innovation of Intelligent Connected Vehicles Industry Based on Test Field: Embedded Case Study from the Perspective of Open Innovation," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    8. Alonso Raposo, María & Grosso, Monica & Mourtzouchou, Andromachi & Krause, Jette & Duboz, Amandine & Ciuffo, Biagio, 2022. "Economic implications of a connected and automated mobility in Europe," Research in Transportation Economics, Elsevier, vol. 92(C).
    9. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    10. Agrawal, Shubham & Schuster, Amy M. & Britt, Noah & Mack, Elizabeth A. & Tidwell, Michael L. & Cotten, Shelia R., 2023. "Building on the past to help prepare the workforce for the future with automated vehicles: A systematic review of automated passenger vehicle deployment timelines," Technology in Society, Elsevier, vol. 72(C).
    11. Hemesath, Sebastian & Tepe, Markus, 2023. "Framing the approval to test self-driving cars on public roads. The effect of safety and competitiveness on citizens' agreement," Technology in Society, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balwant Singh Mehta & Ishwar Awasthi & Nidhi Mehta, 2021. "Women’s Employment and Digital Technology: A Regional Analysis in India," Indian Journal of Human Development, , vol. 15(3), pages 427-442, December.
    2. Raj, Alok & Kumar, J. Ajith & Bansal, Prateek, 2020. "A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 122-137.
    3. Hansson, Lisa, 2020. "Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway," Research in Transportation Economics, Elsevier, vol. 83(C).
    4. Bo Zou & Pooria Choobchian & Julie Rozenberg, 2021. "Cyber resilience of autonomous mobility systems: cyber-attacks and resilience-enhancing strategies," Journal of Transportation Security, Springer, vol. 14(3), pages 137-155, December.
    5. Nikitas, Alexandros & Parkinson, Simon & Vallati, Mauro, 2022. "The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies," Transport Policy, Elsevier, vol. 122(C), pages 1-10.
    6. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Zou,Bo & Choobchian,Pooria & Rozenberg,Julie, 2020. "Cyber Resilience of Autonomous Mobility Systems : Cyber Attacks and Resilience-Enhancing Strategies," Policy Research Working Paper Series 9135, The World Bank.
    8. Pettigrew, Simone & Cronin, Sophie L., 2019. "Stakeholder views on the social issues relating to the introduction of autonomous vehicles," Transport Policy, Elsevier, vol. 81(C), pages 64-67.
    9. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "A systematic literature review of the factors influencing the adoption of autonomous driving," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1065-1082, December.
    10. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    11. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.
    12. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    13. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    14. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    15. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    16. Brougham, David & Haar, Jarrod, 2020. "Technological disruption and employment: The influence on job insecurity and turnover intentions: A multi-country study," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    17. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    18. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    19. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    20. Sallam, Gamal & Baroudi, Uthman, 2020. "A two-stage framework for fair autonomous robot deployment using virtual forces," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 35-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:85-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.