IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v138y2019icp324-339.html
   My bibliography  Save this article

Co-evolutionary and systemic study on the evolution of emerging stem cell-based therapies

Author

Listed:
  • Ávila-Robinson, Alfonso
  • Islam, Nazrul
  • Sengoku, Shintaro

Abstract

Newly emerging therapeutic technologies have the potential to reconfigure the understanding, diagnosis, and treatment of diseases, and, consequently, to impact human health. This study integrates co-evolutionary and system-oriented perspectives to investigate factors influencing the way emerging therapies evolve in their attempt to become established medical practices. We examined the case of the use of induced pluripotent stem (iPS) cell-based therapies for age-related macular degeneration (AMD) disease. Cell therapy evolution is explored by considering their constitutive components, namely disease, biomedical technologies, and clinical practices, and observing the changes experienced by their underlying knowledge structures. We adopted a mixed methods approach that simultaneously uses publication, patent, and clinical trial data. Our results highlight the significance of the diversity of technological possibilities, the role of subjective issues in the selection of directions of search, the complementary nature between established and emerging therapies, and the tight product-process interdependencies. This study contributes to an understanding of the difficulties encountered during the emergence of new cell therapies, and the ways in which such difficulties can be circumvented to establish effective and safe cell-based clinical practices.

Suggested Citation

  • Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2019. "Co-evolutionary and systemic study on the evolution of emerging stem cell-based therapies," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 324-339.
  • Handle: RePEc:eee:tefoso:v:138:y:2019:i:c:p:324-339
    DOI: 10.1016/j.techfore.2018.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518308692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Douglas K.R. & Huang, Lu & Guo, Ying & Porter, Alan L., 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 267-285.
    2. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
    3. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    4. Grinin, Leonid E. & Grinin, Anton L. & Korotayev, Andrey, 2017. "Forthcoming Kondratieff wave, Cybernetic Revolution, and global ageing," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 52-68.
    5. Nelson, Richard R., 2003. "On the uneven evolution of human know-how," Research Policy, Elsevier, vol. 32(6), pages 909-922, June.
    6. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
    7. Barberá-Tomás, David & Consoli, Davide, 2012. "Whatever works: Uncertainty and technological hybrids in medical innovation," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 932-948.
    8. Davide Consoli & Ronnie Ramlogan, 2008. "Out of sight: problem sequences and epistemic boundaries of medical know-how on glaucoma," Journal of Evolutionary Economics, Springer, vol. 18(1), pages 31-56, February.
    9. Kukk, Piret & Moors, Ellen H.M. & Hekkert, Marko P., 2016. "Institutional power play in innovation systems: The case of Herceptin®," Research Policy, Elsevier, vol. 45(8), pages 1558-1569.
    10. Jacobsson, Staffan, 2008. "The emergence and troubled growth of a 'biopower' innovation system in Sweden," Energy Policy, Elsevier, vol. 36(4), pages 1491-1508, April.
    11. Tilo Propp & Ellen H M Moors, 2009. "Will genomics erode public health and prevention? A scenario of unintended consequences in the Netherlands," Science and Public Policy, Oxford University Press, vol. 36(3), pages 199-213, April.
    12. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
    13. Lopolito, A. & Morone, P. & Taylor, R., 2013. "Emerging innovation niches: An agent based model," Research Policy, Elsevier, vol. 42(6), pages 1225-1238.
    14. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    15. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    16. Fei Yuan & Kumiko Miyazaki, 2017. "Trajectory Identification as Proxies for Discerning the Dynamic Nature of Technological Change — The Case of Electric Vehicles Industry," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-20, February.
    17. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    18. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    19. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    20. Wallace, Matthew L. & Ràfols, Ismael, 2018. "Institutional shaping of research priorities: A case study on avian influenza," Research Policy, Elsevier, vol. 47(10), pages 1975-1989.
    21. Carlota Perez, 2010. "Technological revolutions and techno-economic paradigms," Cambridge Journal of Economics, Oxford University Press, vol. 34(1), pages 185-202, January.
    22. Boon, Wouter P.C. & Moors, Ellen H.M. & Meijer, Albert J., 2014. "Exploring dynamics and strategies of niche protection," Research Policy, Elsevier, vol. 43(4), pages 792-803.
    23. Arsia Amir Aslani & Vincent Mangematin, 2010. "The future of drug discovery and development: Shifting emphasis towards personalized medicine," Grenoble Ecole de Management (Post-Print) hal-00749148, HAL.
    24. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    25. Alexander Styhre, 2015. "Financing Life Science Innovation," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-39248-0.
    26. Gittelman, Michelle, 2016. "The revolution re-visited: Clinical and genetics research paradigms and the productivity paradox in drug discovery," Research Policy, Elsevier, vol. 45(8), pages 1570-1585.
    27. Musiolik, Jörg & Markard, Jochen & Hekkert, Marko, 2012. "Networks and network resources in technological innovation systems: Towards a conceptual framework for system building," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1032-1048.
    28. Lipsey, Richard G. & Carlaw, Kenneth I. & Bekar, Clifford T., 2005. "Economic Transformations: General Purpose Technologies and Long-Term Economic Growth," OUP Catalogue, Oxford University Press, number 9780199290895, Decembrie.
    29. Ávila-Robinson, Alfonso & Miyazaki, Kumiko, 2013. "Dynamics of scientific knowledge bases as proxies for discerning technological emergence — The case of MEMS/NEMS technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1071-1084.
    30. Morlacchi, Piera & Nelson, Richard R., 2011. "How medical practice evolves: Learning to treat failing hearts with an implantable device," Research Policy, Elsevier, vol. 40(4), pages 511-525, May.
    31. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    32. Metcalfe, J.S. & James, Andrew & Mina, Andrea, 2005. "Emergent innovation systems and the delivery of clinical services: The case of intra-ocular lenses," Research Policy, Elsevier, vol. 34(9), pages 1283-1304, November.
    33. Yaqub, Ohid & Nightingale, Paul, 2012. "Vaccine innovation, translational research and the management of knowledge accumulation," Social Science & Medicine, Elsevier, vol. 75(12), pages 2143-2150.
    34. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    35. Loasby, Brian J., 2002. "The evolution of knowledge: beyond the biological model," Research Policy, Elsevier, vol. 31(8-9), pages 1227-1239, December.
    36. Marianna Epicoco, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Post-Print hal-03381305, HAL.
    37. Arsia Amir Aslani & Vincent Mangematin, 2010. "The future of drug discovery and development: Shifting emphasis towards personalized medicine," Post-Print hal-00749148, HAL.
    38. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    39. Musiolik, Jörg & Markard, Jochen, 2011. "Creating and shaping innovation systems: Formal networks in the innovation system for stationary fuel cells in Germany," Energy Policy, Elsevier, vol. 39(4), pages 1909-1922, April.
    40. Nelson, Richard R. & Buterbaugh, Kristin & Perl, Marcel & Gelijns, Annetine, 2011. "How medical know-how progresses," Research Policy, Elsevier, vol. 40(10), pages 1339-1344.
    41. Edwin Horlings & Thomas Gurney, 2013. "Search strategies along the academic lifecycle," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1137-1160, March.
    42. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Coccia, 2020. "The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 451-487, July.
    2. Haessler, Philipp & Giones, Ferran & Brem, Alexander, 2023. "The who and how of commercializing emerging technologies: A technology-focused review," Technovation, Elsevier, vol. 121(C).
    3. Abatecola, Gianpaolo & Breslin, Dermot & Kask, Johan, 2020. "Do organizations really co-evolve? Problematizing co-evolutionary change in management and organization studies," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    4. Shin, Hyunjin & Woo, Hyun Goo & Sohn, Kyung-Ah & Lee, Sungjoo, 2023. "Comparing research trends with patenting activities in the biomedical sector: The case of dementia," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    5. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
    2. Blandinieres, Florence, 2019. "Anatomy of the medical innovation process: What are the consequences of replicability issues on innovation?," ZEW Discussion Papers 19-011, ZEW - Leibniz Centre for European Economic Research.
    3. Lauto, Giancarlo & Valentin, Finn, 2016. "The knowledge production model of the New Sciences: The case of Translational Medicine," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 12-21.
    4. Nelson, John P., 2023. "Differential “progressibility” in human know-how: A conceptual overview," Research Policy, Elsevier, vol. 52(2).
    5. Thune, Taran & Mina, Andrea, 2016. "Hospitals as innovators in the health-care system: A literature review and research agenda," Research Policy, Elsevier, vol. 45(8), pages 1545-1557.
    6. Wang, Xuefeng & Zhang, Shuo & Liu, Yuqin & Du, Jian & Huang, Heng, 2021. "How pharmaceutical innovation evolves: The path from science to technological development to marketable drugs," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Anckaert, Paul-Emmanuel & Cassiman, David & Cassiman, Bruno, 2020. "Fostering practice-oriented and use-inspired science in biomedical research," Research Policy, Elsevier, vol. 49(2).
    8. Kukk, Piret & Moors, Ellen H.M. & Hekkert, Marko P., 2016. "Institutional power play in innovation systems: The case of Herceptin®," Research Policy, Elsevier, vol. 45(8), pages 1558-1569.
    9. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    10. Ronnie Ramlogan & Davide Consoli, 2014. "Dynamics of collaborative research medicine: the case of glaucoma," The Journal of Technology Transfer, Springer, vol. 39(4), pages 544-566, August.
    11. Moors, Ellen H.M. & Kukk Fischer, Piret & Boon, Wouter P.C. & Schellen, Frank & Negro, Simona O., 2018. "Institutionalisation of markets: The case of personalised cancer medicine in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 133-143.
    12. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    13. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    14. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    15. Ciarli, Tommaso & Ràfols, Ismael, 2019. "The relation between research priorities and societal demands: The case of rice," Research Policy, Elsevier, vol. 48(4), pages 949-967.
    16. Gibson, Elizabeth & Daim, Tugrul U. & Dabic, Marina, 2019. "Evaluating university industry collaborative research centers," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 181-202.
    17. Ramlogan, Ronnie & Consoli, Davide, 2007. "Knowledge, Understanding and the Dynamics of Medical Innovation," European Journal of Economic and Social Systems, Lavoisier, vol. 20(2), pages 231-249.
    18. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    19. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    20. Chan-Yuan Wong & Hon-Ngen Fung, 2017. "Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 841-867, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:138:y:2019:i:c:p:324-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.