IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v47y2018icp145-154.html
   My bibliography  Save this article

How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China

Author

Listed:
  • Zhang, Pingdan
  • Yuan, Haoming
  • Bai, Fuli
  • Tian, Xin
  • Shi, Feng

Abstract

Upgrading the industrial structure under the constraints of CO2 emission reduction policies is an urgent challenge for northeastern China, which has experienced slow industrial growth. We analyze the impacts of industrial structure transitions on CO2 emissions and reveal significant impacts across the three provinces. Machinery and light manufacturing have shown rapid growth, and their CO2 emissions related to CO2 intensity and production structure changes have exhibited a significant decline. However, traditional carbon-intensive industries such as resource-related manufacturing and mining still emit a large amount of CO2 and existing improvements in production structure are far from sufficient. Construction is one of the largest and fastest growing emitters, yet improvements in CO2 intensity and production structure have only been observed in Liaoning and Jilin. In conclusion, changing the industrial structure is helping northeastern China mitigate their CO2 emissions; however, more effective and targeted strategies are required for sustainable future industrial development.

Suggested Citation

  • Zhang, Pingdan & Yuan, Haoming & Bai, Fuli & Tian, Xin & Shi, Feng, 2018. "How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 145-154.
  • Handle: RePEc:eee:streco:v:47:y:2018:i:c:p:145-154
    DOI: 10.1016/j.strueco.2018.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954349X18301516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.strueco.2018.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. Liu, Zhu & Geng, Yong & Lindner, Soeren & Zhao, Hongyan & Fujita, Tsuyoshi & Guan, Dabo, 2012. "Embodied energy use in China's industrial sectors," Energy Policy, Elsevier, vol. 49(C), pages 751-758.
    4. Kemp-Benedict, Eric, 2018. "Dematerialization, Decoupling, and Productivity Change," Ecological Economics, Elsevier, vol. 150(C), pages 204-216.
    5. Li, Huijuan & Long, Ruyin & Chen, Hong, 2013. "Economic transition policies in Chinese resource-based cities: An overview of government efforts," Energy Policy, Elsevier, vol. 55(C), pages 251-260.
    6. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    7. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    8. Cai, Jialiang & Yin, He & Varis, Olli, 2016. "Impacts of industrial transition on water use intensity and energy-related carbon intensity in China: A spatio-temporal analysis during 2003–2012," Applied Energy, Elsevier, vol. 183(C), pages 1112-1122.
    9. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    10. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    11. Szirmai, Adam, 2012. "Industrialisation as an engine of growth in developing countries, 1950–2005," Structural Change and Economic Dynamics, Elsevier, vol. 23(4), pages 406-420.
    12. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    13. Wang, Hongsheng & Wang, Yunxia & Wang, Haikun & Liu, Miaomiao & Zhang, Yanxia & Zhang, Rongrong & Yang, Jie & Bi, Jun, 2014. "Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou," Energy Policy, Elsevier, vol. 68(C), pages 482-489.
    14. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    15. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    16. Romano, Livio & Traù, Fabrizio, 2017. "The nature of industrial development and the speed of structural change," Structural Change and Economic Dynamics, Elsevier, vol. 42(C), pages 26-37.
    17. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    18. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    19. Lee, Sanghoon & Oh, Dae-Won, 2015. "Economic growth and the environment in China: Empirical evidence using prefecture level data," China Economic Review, Elsevier, vol. 36(C), pages 73-85.
    20. Vu, K.M., 2017. "Structural change and economic growth: Empirical evidence and policy insights from Asian economies," Structural Change and Economic Dynamics, Elsevier, vol. 41(C), pages 64-77.
    21. Xin Tian & Miao Chang & Hiroki Tanikawa & Feng Shi & Hidefumi Imura, 2012. "Regional Disparity in Carbon Dioxide Emissions," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 612-622, August.
    22. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kehan He & Zhifu Mi & Long Chen & D'Maris Coffman & Sai Liang, 2021. "Critical transmission sectors in embodied atmospheric mercury emission network in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1644-1656, December.
    2. Jiachen Ning & Pingyu Zhang & Qifeng Yang & Zuopeng Ma, 2023. "Spatial Pattern of Farmland Transfer in Liaoning Province, China," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    3. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    4. Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "How does producer services’ agglomeration promote carbon reduction?: The case of China," Economic Modelling, Elsevier, vol. 104(C).
    5. Yuangang Li & Maohua Sun & Guanghui Yuan & Qi Zhou & Jinyue Liu, 2019. "Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    6. Langsha Luo & Tianyu Bi & Haochen Yu, 2024. "How Does Diversification of Producer Services Agglomeration Help Reduce Carbon Emissions Intensity? Evidence from 252 Chinese Cities, 2005–2018," Sustainability, MDPI, vol. 16(5), pages 1-16, March.
    7. Tao Ge & Jinye Li & Cang Wang, 2023. "Econometric analysis of the impact of innovative city pilots on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9359-9386, September.
    8. Han, Yonghui & Zhang, Fan & Huang, Liangxiong & Peng, Keming & Wang, Xianbin, 2021. "Does industrial upgrading promote eco-efficiency? ─A panel space estimation based on Chinese evidence," Energy Policy, Elsevier, vol. 154(C).
    9. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenwen Li & Wenping Wang & Yu Wang & Yingbo Qin, 2017. "Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1545-1564, September.
    2. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    3. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    4. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    5. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    6. Li, Jinying & Li, Sisi, 2020. "Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model," Energy Policy, Elsevier, vol. 140(C).
    7. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    8. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    9. Opoku, Eric Evans Osei & Aluko, Olufemi Adewale, 2021. "Heterogeneous effects of industrialization on the environment: Evidence from panel quantile regression," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 174-184.
    10. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    11. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    12. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    13. Rafindadi, Abdulkadir Abdulrashid, 2016. "Does the need for economic growth influence energy consumption and CO2 emissions in Nigeria? Evidence from the innovation accounting test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1209-1225.
    14. Yang Zhou & Jintao Fu & Ying Kong & Rui Wu, 2018. "How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data," Sustainability, MDPI, vol. 10(7), pages 1-19, June.
    15. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    16. Guangyu Luo & Jia-Hsi Weng & Qianxue Zhang & Yu Hao, 2017. "A reexamination of the existence of environmental Kuznets curve for CO2 emissions: evidence from G20 countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1023-1042, January.
    17. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    18. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Pan, Xiongfeng & Guo, Shucen & Xu, Haitao & Tian, Mengyuan & Pan, Xianyou & Chu, Junhui, 2022. "China's carbon intensity factor decomposition and carbon emission decoupling analysis," Energy, Elsevier, vol. 239(PC).
    20. Lele Xin & Junsong Jia & Wenhui Hu & Huiqing Zeng & Chundi Chen & Bo Wu, 2021. "Decomposition and Decoupling Analysis of CO 2 Emissions Based on LMDI and Two-Dimensional Decoupling Model in Gansu Province, China," IJERPH, MDPI, vol. 18(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:47:y:2018:i:c:p:145-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.