IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v12y2001i4p425-455.html
   My bibliography  Save this article

The determinants of production-related carbon emissions in West Germany, 1985-1990: assessing the role of technology and trade

Author

Listed:
  • Welsch, Heinz

Abstract

No abstract is available for this item.

Suggested Citation

  • Welsch, Heinz, 2001. "The determinants of production-related carbon emissions in West Germany, 1985-1990: assessing the role of technology and trade," Structural Change and Economic Dynamics, Elsevier, vol. 12(4), pages 425-455, December.
  • Handle: RePEc:eee:streco:v:12:y:2001:i:4:p:425-455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954-349X(01)00027-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    2. Michael C. Burda & Barbara Dluhosch, 2002. "Fragmentation, Globalisation and Labour Markets," International Economic Association Series, in: David Greenaway & Richard Upward & Katharine Wakelin (ed.), Trade, Investment, Migration and Labour Market Adjustment, chapter 4, pages 47-65, Palgrave Macmillan.
    3. Eli Bekman & John Bound & Stephen Machin, 1998. "Implications of Skill-Biased Technological Change: International Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1245-1279.
    4. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    5. Steven Saeger, 1997. "Globalization and deindustrialization: Myth and reality in the OECD," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 133(4), pages 579-608, December.
    6. Unander, Fridtjof & Karbuz, Sohbet & Schipper, Lee & Khrushch, Marta & Ting, Michael, 1999. "Manufacturing energy use in OECD countries: decomposition of long-term trends," Energy Policy, Elsevier, vol. 27(13), pages 769-778, November.
    7. Welsch, Heinz & Ochsen, Carsten, 2001. "Dismantling of nuclear power in Germany: sectoral and macroeconomic effects," Energy Policy, Elsevier, vol. 29(4), pages 279-289, March.
    8. Patrick Minford & Jonathan Riley & Eric Nowell, 1997. "Trade, technology and labour markets in the world economy, 1970-90: A computable general equilibrium analysis," Journal of Development Studies, Taylor & Francis Journals, vol. 34(2), pages 1-34.
    9. Jean-Marc Burniaux & John P. Martin & Giuseppe Nicoletti & Joaquim Oliveira Martins, 1992. "GREEN a Multi-Sector, Multi-Region General Equilibrium Model for Quantifying the Costs of Curbing CO2 Emissions: A Technical Manual," OECD Economics Department Working Papers 116, OECD Publishing.
    10. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    11. Carruth, Alan & Schnabel, Claus, 1993. " The Determination of Contract Wages in West Germany," Scandinavian Journal of Economics, Wiley Blackwell, vol. 95(3), pages 297-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    2. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    3. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    4. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    5. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    6. Arto, Iñaki & Ansuategui Cobo, José Alberto, 2003. "La evolución de la intensidad energética de la industria vasca entre 1982-2001: Un análisis de descomposición," IKERLANAK 2003-07, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    7. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    8. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    9. Max Franks & Ottmar Edenhofer & Kai Lessmann, 2017. "Why Finance Ministers Favor Carbon Taxes, Even If They Do Not Take Climate Change into Account," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 445-472, November.
    10. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    11. Davis, W. Bart & Sanstad, Alan H. & Koomey, Jonathan G., 2003. "Contributions of weather and fuel mix to recent declines in US energy and carbon intensity," Energy Economics, Elsevier, vol. 25(4), pages 375-396, July.
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    13. Carsten Ochsen & Heinz Welsch, 2005. "Technology, Trade, and Income Distribution in West Germany: A Factor-Share Analysis, 1976–1994," Journal of Applied Economics, Taylor & Francis Journals, vol. 8(2), pages 321-345, November.
    14. Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s? : the relative importance of structural change and intensity change," CCSO Working Papers 200105, University of Groningen, CCSO Centre for Economic Research.
    15. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    16. Heinz Welsch & Viola Ehrenheim, 2004. "Environmental fiscal reform in Germany: a computable general equilibrium analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 6(3), pages 197-219, September.
    17. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    18. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    19. Santosh Kumar SAHU & K NARAYANAN, 2010. "Decomposition Of Industrial Energy Consumption In Indian Manufacturing The Energy Intensity Approach," Journal of Advanced Research in Management, ASERS Publishing, vol. 1(1), pages 22-38.
    20. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:12:y:2001:i:4:p:425-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.