IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v162y2016icp143-150.html
   My bibliography  Save this article

How does the seasonality influence utilitarian walking behaviour in different urbanization settings in Scotland?

Author

Listed:
  • Hong, Jinhyun

Abstract

The relationship between the built environment and walking has been analyzed for decades. However, the seasonality effects on the relationship between the built environment and walking have not been well examined even though weather is one of the key determinants of walking. Therefore, this study used 2007–8 Scottish Household Survey data collected over two years and estimated the interaction effects between the urbanization setting (i.e., residential locations: urban, town and rural areas) and seasons (i.e., spring, summer, autumn and winter) on walking. Scottish Urban-rural classification scheme is measured based on the population and access to large cities, and used as a key independent variable. The number of walking days for specific purposes such as work or shopping (utilitarian walking) during the past 7 days is used as a dependent variable. The results show that there are significant geographical variations of seasonality effect on utilitarian walking. That is, people living in rural areas are more sensitive to seasonality impacts than those living in urban areas. In addition, we found that the association between urbanization setting and utilitarian walking varies across seasons, indicating that their relationship can be miss-estimated if we ignore the seasonality effects. Therefore, policy makers and practitioners should consider the seasonality effects to evaluate the effectiveness of land use policy correctly. Finally, we still find the significant association between the urbanization setting and utilitarian walking behaviour with the consideration of seasonality effects, supporting the claim of New Urbanism.

Suggested Citation

  • Hong, Jinhyun, 2016. "How does the seasonality influence utilitarian walking behaviour in different urbanization settings in Scotland?," Social Science & Medicine, Elsevier, vol. 162(C), pages 143-150.
  • Handle: RePEc:eee:socmed:v:162:y:2016:i:c:p:143-150
    DOI: 10.1016/j.socscimed.2016.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953616303082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2016.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinhyun Hong & Cynthia Chen, 2014. "The role of the built environment on perceived safety from crime and walking: examining direct and indirect impacts," Transportation, Springer, vol. 41(6), pages 1171-1185, November.
    2. Helbich, Marco & Böcker, Lars & Dijst, Martin, 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam," Journal of Transport Geography, Elsevier, vol. 38(C), pages 38-47.
    3. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    4. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    5. Gerrit Knaap & Emily Talen, 2005. "New Urbanism and Smart Growth: A Few Words from the Academy," International Regional Science Review, , vol. 28(2), pages 107-118, April.
    6. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    7. Xinyu Cao & Susan Handy & Patricia Mokhtarian, 2006. "The Influences of the Built Environment and Residential Self-Selection on Pedestrian Behavior: Evidence from Austin, TX," Transportation, Springer, vol. 33(1), pages 1-20, January.
    8. Fox, John & Hong, Jangman, 2009. "Effect Displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i01).
    9. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    10. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    11. Xinyu (Jason) Cao, 2010. "Exploring Causal Effects of Neighborhood Type on Walking Behavior Using Stratification on the Propensity Score," Environment and Planning A, , vol. 42(2), pages 487-504, February.
    12. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    13. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    14. Pikora, Terri & Giles-Corti, Billie & Bull, Fiona & Jamrozik, Konrad & Donovan, Rob, 2003. "Developing a framework for assessment of the environmental determinants of walking and cycling," Social Science & Medicine, Elsevier, vol. 56(8), pages 1693-1703, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Jinhyun & Thakuriah, Piyushimita Vonu, 2018. "Examining the relationship between different urbanization settings, smartphone use to access the Internet and trip frequencies," Journal of Transport Geography, Elsevier, vol. 69(C), pages 11-18.
    2. Yang, Shuo & Fan, Yingling & Deng, Wei & Cheng, Long, 2019. "Do built environment effects on travel behavior differ between household members? A case study of Nanjing, China," Transport Policy, Elsevier, vol. 81(C), pages 360-370.
    3. Houshmand Masoumi & Grzegorz Sierpiński, 2022. "The Land Use and Individual Correlates of Pedestrian Commuting: Who Walks to Their Work or Place of Study in the Large Cities of the MENA Region?," Sustainability, MDPI, vol. 14(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    2. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    3. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.
    4. Wang, Tingting & Chen, Cynthia, 2012. "Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1594-1607.
    5. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    6. Liang Ma & Corinne Mulley & Wen Liu, 2017. "Social marketing and the built environment: What matters for travel behaviour change?," Transportation, Springer, vol. 44(5), pages 1147-1167, September.
    7. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    8. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    9. Cao, Xinyu & Mokhtarian, Patricia & Handy, Susan, 2008. "Examining The Impacts of Residential Self-Selection on Travel Behavior: Methodologies and Empirical Findings," Institute of Transportation Studies, Working Paper Series qt08x1k476, Institute of Transportation Studies, UC Davis.
    10. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    11. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    12. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    13. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    14. De Vos, Jonas & Ettema, Dick & Witlox, Frank, 2018. "Changing travel behaviour and attitudes following a residential relocation," Journal of Transport Geography, Elsevier, vol. 73(C), pages 131-147.
    15. De Vos, Jonas & Mouratidis, Kostas & Cheng, Long & Kamruzzaman, Md., 2021. "Does a residential relocation enable satisfying travel?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 188-201.
    16. Hyungkyoo Kim & Elizabeth Macdonald, 2016. "Does Wind Discourage Sustainable Transportation Mode Choice? Findings from San Francisco, California, USA," Sustainability, MDPI, vol. 8(3), pages 1-15, March.
    17. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2016. "The impacts of built environment on home-based work and non-work trips: An empirical study from Iran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 196-207.
    18. Jonas De Vos & Patricia L. Mokhtarian & Tim Schwanen & Veronique Van Acker & Frank Witlox, 2016. "Travel mode choice and travel satisfaction: bridging the gap between decision utility and experienced utility," Transportation, Springer, vol. 43(5), pages 771-796, September.
    19. Schneider, Robert James, 2011. "Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling," University of California Transportation Center, Working Papers qt06v2g6dh, University of California Transportation Center.
    20. Xinyu Cao & Patricia Mokhtarian & Susan Handy, 2007. "Do changes in neighborhood characteristics lead to changes in travel behavior? A structural equations modeling approach," Transportation, Springer, vol. 34(5), pages 535-556, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:162:y:2016:i:c:p:143-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.