IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp195-209.html
   My bibliography  Save this article

Small scale concentrating solar plants for rural electrification

Author

Listed:
  • Seshie, Yao M.
  • N’Tsoukpoe, Kokouvi Edem
  • Neveu, Pierre
  • Coulibaly, Yézouma
  • Azoumah, Yao K.

Abstract

Concentrating solar power (CSP) seems to be a promising solution for rural electrification in Sub-Saharan Africa. Small scale CSP plant appears to be most appropriate because it is suitable to the needs of rural communities: most of components can be found to be of low cost in the African market and there are available qualified local human resource to build the systems. A state of art of small scale CSP plants in the range of 1–500 kWe are reviewed in this paper to showcase previous and current works undertaken throughout the world. 35 small scale CSP plants are identified and reviewed in the paper. Technical analysis is conducted on the identified plants to understand their operating principles. The technical analysis highlighted reasons behind the choices made for every component from the solar field to the power block.

Suggested Citation

  • Seshie, Yao M. & N’Tsoukpoe, Kokouvi Edem & Neveu, Pierre & Coulibaly, Yézouma & Azoumah, Yao K., 2018. "Small scale concentrating solar plants for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 195-209.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:195-209
    DOI: 10.1016/j.rser.2018.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul, Shyamal & Bhattacharya, Rabindra N., 2004. "Causality between energy consumption and economic growth in India: a note on conflicting results," Energy Economics, Elsevier, vol. 26(6), pages 977-983, November.
    2. Kane, M. & Larrain, D. & Favrat, D. & Allani, Y., 2003. "Small hybrid solar power system," Energy, Elsevier, vol. 28(14), pages 1427-1443.
    3. Amankwah-Amoah, Joseph, 2015. "Solar energy in sub-Saharan Africa: The challenges and opportunities of technological leapfrogging," MPRA Paper 88627, University Library of Munich, Germany.
    4. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    5. Alli D. Mukasa & Emelly Mutambatsere & Yannis Arvanitis & Thouraya Triki, 2013. "Working Paper 170 - Development of Wind Energy in Africa," Working Paper Series 449, African Development Bank.
    6. Niknia, Iman & Yaghoubi, Mahmood, 2013. "Transient analysis of integrated Shiraz hybrid solar thermal power plant," Renewable Energy, Elsevier, vol. 49(C), pages 216-221.
    7. Kebede, Ellene & Kagochi, John & Jolly, Curtis M., 2010. "Energy consumption and economic development in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 32(3), pages 532-537, May.
    8. Xu, Feng & Yogi Goswami, D & S. Bhagwat, Sunil, 2000. "A combined power/cooling cycle," Energy, Elsevier, vol. 25(3), pages 233-246.
    9. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    10. Py, Xavier & Azoumah, Yao & Olives, Régis, 2013. "Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 306-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    2. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    3. Datas, A. & Ramos, A. & del Cañizo, C., 2019. "Techno-economic analysis of solar PV power-to-heat-to-power storage and trigeneration in the residential sector," Applied Energy, Elsevier, vol. 256(C).
    4. Morais, Pedro Henrique da Silva & Lodi, Andressa & Aoki, Adriana Cristine & Modesto, Marcelo, 2020. "Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant," Renewable Energy, Elsevier, vol. 157(C), pages 1131-1147.
    5. Saeed Abdul-Ganiyu & David A Quansah & Emmanuel W Ramde & Razak Seidu & Muyiwa S. Adaramola, 2020. "Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana," Energies, MDPI, vol. 13(11), pages 1-17, May.
    6. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    7. Maryon Eliza Matius & Mohd Azlan Ismail & Yan Yan Farm & Adriana Erica Amaludin & Mohd Adzrie Radzali & Ahmad Fazlizan & Wan Khairul Muzammil, 2021. "On the Optimal Tilt Angle and Orientation of an On-Site Solar Photovoltaic Energy Generation System for Sabah’s Rural Electrification," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    8. Vallecha, H. & Bhola, P., 2019. "Sustainability and replicability framework: Actor network theory based critical case analysis of renewable community energy projects in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 194-208.
    9. Guzel Mingaleeva & Olga Afanaseva & Duc Toan Nguen & Dang Nayt Pham & Pietro Zunino, 2020. "The Integration of Hybrid Mini Thermal Power Plants into the Energy Complex of the Republic of Vietnam," Energies, MDPI, vol. 13(21), pages 1-17, November.
    10. Niebert Blair & Dirk Pons & Susan Krumdieck, 2019. "Electrification in Remote Communities: Assessing the Value of Electricity Using a Community Action Research Approach in Kabakaburi, Guyana," Sustainability, MDPI, vol. 11(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tafirenyika Sunde, 2018. "The interaction of energy consumption and economic growth in South Africa: assessment from the bounds testing approach," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 10(2), pages 170-183.
    2. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    3. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    4. D’Amelio, Matilde & Garrone, Paola & Piscitello, Lucia, 2016. "Can Multinational Enterprises Light up Developing Countries?," World Development, Elsevier, vol. 88(C), pages 12-32.
    5. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    6. Han, Wei & Chen, Qiang & Sun, Liuli & Ma, Sijun & Zhao, Ting & Zheng, Danxing & Jin, Hongguang, 2014. "Experimental studies on a combined refrigeration/power generation system activated by low-grade heat," Energy, Elsevier, vol. 74(C), pages 59-66.
    7. Cosimo Magazzino, 2015. "Energy consumption and GDP in Italy: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(1), pages 137-153, February.
    8. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    9. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    10. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    11. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    12. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    13. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    14. Pirlogea, Corina & Cicea, Claudiu, 2012. "Econometric perspective of the energy consumption and economic growth relation in European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5718-5726.
    15. Magazzino, Cosimo, 2011. "Energy consumption and aggregate income in Italy: cointegration and causality analysis," MPRA Paper 28494, University Library of Munich, Germany.
    16. Zheng, Danxing & Jing, Xuye, 2013. "Chemical amplifier and energy utilization principles of heat conversion cycle systems," Energy, Elsevier, vol. 63(C), pages 180-188.
    17. Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
    18. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    19. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    20. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:195-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.