IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v8y2004i1p1-47.html
   My bibliography  Save this article

Bioresource status in Karnataka

Author

Listed:
  • Ramachandra, T. V.
  • Kamakshi, G.
  • Shruthi, B. V.

Abstract

Energy is a vital component of any society playing a pivotal role in the development. Post oil crises shifted the focus of energy planners towards renewable resources and energy conservation. Biomass is one such renewable, which accounts for nearly 33% of a developing country's energy needs. In India, it meets about 75% of the rural energy needs. In Karnataka, non-commercial energy sources like firewood, agricultural residues, charcoal and cow dung account for 53.2%. The energy released by the reaction of organic carbon (of bioresources) with oxygen is referred to as bioenergy. Bioresource availability is highly diversified and it depends on the region's agroclimatic conditions. Inventorying of these resources is required for describing the quality, quantity, change, productivity, condition of bioresources and requirement in a given area. The present study assesses bioresource status across the agroclimatic zones of Karnataka, considering the bioenergy availability (from agriculture, horticulture, forests and plantations) and sector-wise energy demand (domestic, agriculture, industry, etc.). Bioresource availability is computed based on the compilation of data on the area and productivity of agriculture and horticulture crops, forests and plantations. Sector-wise energy demand is computed based on the National Sample Survey Organisation (NSSO study) data, primary survey data and from the literature. Using the data of bioresource availability and demand, bioresource status is computed for all the agroclimatic zones. The ratio of bioresource availability to demand gives the bioresource status. The ratio greater than one indicates bioresource surplus zones, while a ratio less than one indicates scarcity. The study reveals that the central dry zone (1.4), the hilly zone (3.79), the southern transition zone (3.12) and the coastal zone (3.40) are bioresource surplus zones, whereas the northeastern transition zone (0.48), northeastern dry zone (0.23), northern dry zone (0.58), eastern dry zone (0.39), southern dry zone (0.93) and northern transition zone (0.45) come under bioresource-deficient zones. Among the bioresource surplus zones, horticulture residues contribute significantly towards bioenergy in the central dry zone, southern transition zone and the coastal zone, while in the hilly zone the main contributor of bioenergy are agricultural residues. Amidst the bioresource-deficient zones, agriculture is the major contributor of bioenergy in the northeastern transition zone (52%), northern dry zone (59%), and northern transition zone. Based on the bioenergy status of the zones and land use pattern, feasible management and technical options have been discussed, which help in optimising the available bioenergy and in building a sustainable energy society. This study also explores various programmes that can be initiated and implemented like social, community and joint forest management involving public participation. Such schemes will lessen the burden on the existing resources and also help the rural masses to procure biomass on a sustained basis.

Suggested Citation

  • Ramachandra, T. V. & Kamakshi, G. & Shruthi, B. V., 2004. "Bioresource status in Karnataka," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 1-47, February.
  • Handle: RePEc:eee:rensus:v:8:y:2004:i:1:p:1-47
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(03)00094-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramachandra, T. V. & Joshi, N. V. & Subramanian, D. K., 2000. "Present and prospective role of bioenergy in regional energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(4), pages 375-430, December.
    2. -, 1980. "Lista de publicaciones de CLADES disponibles," Sede de la CEPAL en Santiago (Estudios e Investigaciones) 29444, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramachandra, T.V., 2010. "Mapping of fuelwood trees using geoinformatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 642-654, February.
    2. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    3. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    4. Kale, Rajesh V. & Pohekar, Sanjay D., 2012. "Electricity demand supply analysis: Current status and future prospects for Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3960-3966.
    5. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    6. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    7. Nakomcic-Smaragdakis, Branka & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis of solid biomass energy potential in Autonomous Province of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 186-191.
    8. Singh, Rajeev Pratap & Singh, Pooja & Araujo, Ademir S.F. & Hakimi Ibrahim, M. & Sulaiman, Othman, 2011. "Management of urban solid waste: Vermicomposting a sustainable option," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 719-729.
    9. Muneer, Tariq & Asif, Muhammad & Munawwar, Saima, 2005. "Sustainable production of solar electricity with particular reference to the Indian economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 444-473, October.
    10. Kumar, Ashwani & Kumar, Kapil & Kaushik, Naresh & Sharma, Satyawati & Mishra, Saroj, 2010. "Renewable energy in India: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2434-2442, October.
    11. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    12. Kumar, Anil & Prakash, Om & Dube, Akarshi, 2017. "A review on progress of concentrated solar power in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 304-307.
    13. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    14. Cai, Junmeng & Liu, Ronghou & Deng, Chunjian, 2008. "An assessment of biomass resources availability in Shanghai: 2005 analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1997-2004, September.
    15. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    16. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z. & Golusin, Mirjana T., 2010. "An overview of biomass energy utilization in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 550-553, January.
    17. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq, 2008. "An overview of biomass energy utilization in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1988-1996, September.
    18. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.
    19. Dorota Janiszewska & Luiza Ossowska, 2020. "Biomass as the Most Popular Renevable Energy Source in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 315-326.
    20. Gokcol, Cihan & Dursun, Bahtiyar & Alboyaci, Bora & Sunan, Erkan, 2009. "Importance of biomass energy as alternative to other sources in Turkey," Energy Policy, Elsevier, vol. 37(2), pages 424-431, February.
    21. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    2. Khattak, Naeem Ur Rehman Khattak & Hussain, Anwar Hussain, 2009. "Determinants of Gas Energy Consumption in Pakistan: An Econometric Analysis (1971-2006)," MPRA Paper 41993, University Library of Munich, Germany.
    3. Mengmeng Hao & Shuai Chen & Yushu Qian & Dong Jiang & Fangyu Ding, 2022. "Using Machine Learning to Identify the Potential Marginal Land Suitable for Giant Silvergrass ( Miscanthus × giganteus )," Energies, MDPI, vol. 15(2), pages 1-13, January.
    4. Kaygusuz, K. & Türker, M.F., 2002. "Biomass energy potential in Turkey," Renewable Energy, Elsevier, vol. 26(4), pages 661-678.
    5. Lei Bi & Murray Haight, 2007. "Anaerobic digestion and community development: A case study from Hainan province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(4), pages 501-521, November.
    6. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    7. Ramachandra, T.V. & Saranya, G., 2022. "Sustainable Bioeconomy prospects of diatom biorefineries in the Indian west coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    9. Batzias, F.A. & Sidiras, D.K. & Spyrou, E.K., 2005. "Evaluating livestock manures for biogas production: a GIS based method," Renewable Energy, Elsevier, vol. 30(8), pages 1161-1176.
    10. Thavasi, V. & Ramakrishna, S., 2009. "Asia energy mixes from socio-economic and environmental perspectives," Energy Policy, Elsevier, vol. 37(11), pages 4240-4250, November.
    11. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    12. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    13. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq, 2008. "An overview of biomass energy utilization in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1988-1996, September.
    14. Ramachandra, T.V., 2010. "Mapping of fuelwood trees using geoinformatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 642-654, February.
    15. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Ramachandra, T.V. & Shwetmala,, 2012. "Decentralised carbon footprint analysis for opting climate change mitigation strategies in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5820-5833.
    17. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2009. "Potential development of bioethanol production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2722-2727, December.
    18. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    19. Bluemling, Bettina & de Visser, Ina, 2013. "Overcoming the “club dilemma” of village-scale bioenergy projects—The case of India," Energy Policy, Elsevier, vol. 63(C), pages 18-25.
    20. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z. & Golusin, Mirjana T., 2010. "An overview of biomass energy utilization in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 550-553, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:8:y:2004:i:1:p:1-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.