IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1345-1354.html
   My bibliography  Save this article

Possibilities for conversion of microalgae oil into aviation fuel: A review

Author

Listed:
  • Bwapwa, Joseph K.
  • Anandraj, Akash
  • Trois, Cristina

Abstract

The aviation sector relies on petroleum jet fuel because it is the most efficient energy carrier. Due to environmental and economic concerns a strong demand for alternative fuels is emerging. There is a need for diversification of energy sources from natural resources. These resources must be environmentally friendly and costs effective. Environmental impacts of fossil fuels on global warming and climate change are being a major concern today. Furthermore, the fluctuations of oil prices and need for sustainable fuel supply are the strong drivers for the economies of fuel users. In the aviation sector, Jet fuel from microalgae is one of the alternatives receiving considerable attention; it offers the potential to diversify energy sources. Microalgae species can produce lipids; they do not require high use of land, do not need freshwater, can grow in marine water or wastewater, grow faster in very short period of time, the produced oil is not a threat to food security. Similarly, the effect of climate change and global warming due to the generation of greenhouse gases (GHG) from petroleum jet fuel can be considerably reduced due to low carbon footprint generated by algae based fuels. Therefore, algae based aviation fuels can be considered as an alternative to produce an efficient fuel compared to conventional fuels. Conversely, the key challenge is: many algae species have lower lipid content. Harvesting and drying processes are costly as well as upstream processes to convert microalgae oil into Jet fuel. Although algae biofuels are still small players in the aviation industry, there is a potential for the future. This review analyses some routes to be explored or already explored, their strengths and weaknesses, the current trends and possible conceptual approaches to get aviation fuel from microalgae oil.

Suggested Citation

  • Bwapwa, Joseph K. & Anandraj, Akash & Trois, Cristina, 2017. "Possibilities for conversion of microalgae oil into aviation fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1345-1354.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1345-1354
    DOI: 10.1016/j.rser.2017.05.224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric J. Steen & Yisheng Kang & Gregory Bokinsky & Zhihao Hu & Andreas Schirmer & Amy McClure & Stephen B. del Cardayre & Jay D. Keasling, 2010. "Microbial production of fatty-acid-derived fuels and chemicals from plant biomass," Nature, Nature, vol. 463(7280), pages 559-562, January.
    2. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    3. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    4. Hem R. Thapa & Mandar T. Naik & Shigeru Okada & Kentaro Takada & István Molnár & Yuquan Xu & Timothy P. Devarenne, 2016. "A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    5. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    6. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    7. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    8. D. Ryan Georgianna & Stephen P. Mayfield, 2012. "Exploiting diversity and synthetic biology for the production of algal biofuels," Nature, Nature, vol. 488(7411), pages 329-335, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
    2. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Marinič, Dana & Grilc, Miha & Hočevar, Brigita & Delrue, Florian & Likozar, Blaž, 2023. "Liquefaction, cracking and hydrogenation of microalgae biomass resources to CO2 negative advanced biofuels: Mechanisms, reaction microkinetics and modelling," Renewable Energy, Elsevier, vol. 203(C), pages 382-393.
    4. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Giwa, Adewale & Adeyemi, Idowu & Dindi, Abdallah & Lopez, Celia García-Baños & Lopresto, Catia Giovanna & Curcio, Stefano & Chakraborty, Sudip, 2018. "Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 239-257.
    7. Prussi, M. & Weindorf, W. & Buffi, M. & Sánchez López, J. & Scarlat, N., 2021. "Are algae ready to take off? GHG emission savings of algae-to-kerosene production," Applied Energy, Elsevier, vol. 304(C).
    8. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Wang, Xin & Jin, Xiaodong & Wang, Hui & Wang, Yi & Zuo, Lu & Shen, Boxiong & Yang, Jiancheng, 2023. "Catalytic pyrolysis of microalgal lipids to liquid biofuels: Metal oxide doped catalysts with hierarchically porous structure and their performance," Renewable Energy, Elsevier, vol. 212(C), pages 887-896.
    10. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    11. Huang, Endai & Zhang, Xiaolei & Rodriguez, Luis & Khanna, Madhu & de Jong, Sierk & Ting, K.C. & Ying, Yibin & Lin, Tao, 2019. "Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    13. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    14. Chen, Wei & Li, Kaixu & Xia, Mingwei & Yang, Haiping & Chen, Yingquan & Chen, Xu & Che, Qingfeng & Chen, Hanping, 2018. "Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst," Energy, Elsevier, vol. 157(C), pages 472-482.
    15. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Chiu-Mei Kuo & Yu-Ling Sun & Cheng-Han Lin & Chao-Hsu Lin & Hsi-Tien Wu & Chih-Sheng Lin, 2021. "Cultivation and Biorefinery of Microalgae ( Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review," Sustainability, MDPI, vol. 13(23), pages 1-30, December.
    17. Natalia Kujawska & Szymon Talbierz & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński, 2021. "Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol," Energies, MDPI, vol. 14(6), pages 1-17, March.
    18. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    19. Sharma, Prabhakar & Bora, Bhaskor J., 2023. "Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen," Energy, Elsevier, vol. 270(C).
    20. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    3. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    4. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    5. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    6. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    7. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    8. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    9. Preeti Pal & Kit Wayne Chew & Hong-Wei Yen & Jun Wei Lim & Man Kee Lam & Pau Loke Show, 2019. "Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    10. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    11. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    12. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.
    13. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    14. Marianela Cobos & Jae D. Paredes & J. Dylan Maddox & Gabriel Vargas-Arana & Leenin Flores & Carla P. Aguilar & Jorge L. Marapara & Juan C. Castro, 2017. "Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production," Energies, MDPI, vol. 10(2), pages 1-16, February.
    15. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    16. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    17. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    18. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.
    19. Natasha Laraib & Ali Hussain & Arshad Javid & Tahir Noor & Qurat-ul-Ain Ahmad & Asma Chaudhary & Maleeha Manzoor & Muhammad Akmal & Syed Mohsin Bukhari & Waqas Ali & Tae Jin Choi & Peer M. Schenk, 2022. "Recent trends in microalgal harvesting: an overview," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8691-8721, June.
    20. Rashid, Naim & Ur Rehman, Muhammad Saif & Sadiq, Madeha & Mahmood, Tariq & Han, Jong-In, 2014. "Current status, issues and developments in microalgae derived biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 760-778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1345-1354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.