IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v7y2003i5p367-395.html
   My bibliography  Save this article

Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand

Author

Listed:
  • Tanatvanit, Somporn
  • Limmeechokchai, Bundit
  • Chungpaibulpatana, Supachart

Abstract

A brief review of energy use patterns in three economic sectors; namely, residential, industrial and transport sectors is provided in this paper. The transport sector is the largest energy-consuming sector in Thailand, followed by the industrial and residential sectors, respectively. In order to reduce both imported energy and environmental emissions, energy conservation programs would be implemented. This paper forecasts the growth in energy demand and corresponding emissions to the year 2020 for those three sectors by using a model based on the end-use approach. The energy savings from the energy conservation strategies, such as energy efficiency improvement and energy demand management, are assessed and also the implications on electricity generation expansion planning are examined. The integrated resource planning (IRP) model is used to find the least-cost electricity generation expansion plans. Energy conservation options, including energy efficiency improvement programs, are introduced in the residential and industrial sectors. Public transportation and engine technology improvements are introduced in the transport sector. The effects of energy conservation options are analyzed using a scenario-based approach. The results of analysis reveal that the improvement of public transportation can reduce future energy requirements and CO2 emissions in 2020 by 635 thousand ton of oil equivalent (toe) and 2024 thousand ton of CO2 equivalent, respectively. If all options are simultaneously implemented, the potential of energy savings and CO2 mitigation in 2020 are estimated to be 1240 thousand toe and 3622 thousand ton of CO2 equivalent, respectively.

Suggested Citation

  • Tanatvanit, Somporn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2003. "Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 367-395, October.
  • Handle: RePEc:eee:rensus:v:7:y:2003:i:5:p:367-395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(03)00066-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharjee, Debashish & Haider, S. Waqar & Tanaboriboon, Yordphol & Sinha, Kumares C., 1997. "Commuters' attitudes towards travel demand management in Bangkok," Transport Policy, Elsevier, vol. 4(3), pages 161-170, July.
    2. Shrestha, Ram M. & O.P. Marpaung, Charles, 2002. "Supply- and demand-side effects of power sector planning with CO2 mitigation constraints in a developing country," Energy, Elsevier, vol. 27(3), pages 271-286.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Nhan T. & Ha-Duong, Minh, 2009. "Economic potential of renewable energy in Vietnam's power sector," Energy Policy, Elsevier, vol. 37(5), pages 1601-1613, May.
    2. Taseska, V. & Markovska, N. & Causevski, A. & Bosevski, T. & Pop-Jordanov, J., 2011. "Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite," Energy, Elsevier, vol. 36(4), pages 2266-2270.
    3. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    4. Sarjiya, & Budi, Rizki Firmansyah Setya & Hadi, Sasongko Pramono, 2019. "Game theory for multi-objective and multi-period framework generation expansion planning in deregulated markets," Energy, Elsevier, vol. 174(C), pages 323-330.
    5. Shrestha, Ram M. & Marpaung, Charles O.P., 2006. "Integrated resource planning in the power sector and economy-wide changes in environmental emissions," Energy Policy, Elsevier, vol. 34(18), pages 3801-3811, December.
    6. Hu, Zhaoguang & Tan, Xiandong & Yang, Fan & Yang, Ming & Wen, Quan & Shan, Baoguo & Han, Xinyang, 2010. "Integrated resource strategic planning: Case study of energy efficiency in the Chinese power sector," Energy Policy, Elsevier, vol. 38(11), pages 6391-6397, November.
    7. Henning, Dag & Trygg, Louise, 2008. "Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions," Energy Policy, Elsevier, vol. 36(7), pages 2330-2350, July.
    8. Cao, Xinyu & Mokhtarian, Patricia L., 2005. "How do individuals adapt their personal travel? A conceptual exploration of the consideration of travel-related strategies," Transport Policy, Elsevier, vol. 12(3), pages 199-206, May.
    9. Nhan Thanh Nguyen & Minh Ha-Duong, 2009. "The potential for mitigation of CO2 emissions in Vietnam's power sector," Post-Print halshs-00441085, HAL.
    10. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    11. Shrestha, Ram M. & Marpaung, Charles O. P., 2005. "Supply- and demand-side effects of power sector planning with demand-side management options and SO2 emission constraints," Energy Policy, Elsevier, vol. 33(6), pages 815-825, April.
    12. Batas Bjelić, Ilija & Rajaković, Nikola & Ćosić, Boris & Duić, Neven, 2013. "Increasing wind power penetration into the existing Serbian energy system," Energy, Elsevier, vol. 57(C), pages 30-37.
    13. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.
    14. Rachmatullah, C. & Aye, Lu & Fuller, R.J., 2007. "Scenario planning for the electricity generation in Indonesia," Energy Policy, Elsevier, vol. 35(4), pages 2352-2359, April.
    15. Krishna Priya, G.S. & Bandyopadhyay, Santanu, 2017. "Multi-objective pinch analysis for power system planning," Applied Energy, Elsevier, vol. 202(C), pages 335-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:7:y:2003:i:5:p:367-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.