IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp1348-1362.html
   My bibliography  Save this article

The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power

Author

Listed:
  • Rusu, Liliana
  • Onea, Florin

Abstract

The main objectives of the present work are to review the global wave energy resources according to the most recent datasets available, to identify the locations with the worldwide highest wave energy potential and to assess in those locations the performance of some state-of-the-art wave energy converters. For this purpose, 15 years of wave data provided by the European Centre for Medium-Range Weather Forecasts, covering the time interval 2000–2014, were considered, processed and analysed. After identifying the geographical regions with the highest wave power, 15 reference points, which were considered more relevant from the point of view of their wave energy potential, have been defined in each hemisphere (northern and southern, respectively). As a following step, corresponding to all of these reference points, the most relevant wave patterns have been identified, and this information was subsequently used to assess the expected power output of the wave energy converters considered. Some other relevant parameters, such as the capacity factor or the capture width, were evaluated as well. Following the results provided by this work, we can expect that most of the existent devices for harnessing wave energy would perform well near most of the coastal environments identified. Moreover, it also must be highlighted that in the future, wave energy farms can play a very active role from the point of view of coastal protection.

Suggested Citation

  • Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:1348-1362
    DOI: 10.1016/j.rser.2016.11.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116308838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arena, Felice & Laface, Valentina & Malara, Giovanni & Romolo, Alessandra & Viviano, Antonino & Fiamma, Vincenzo & Sannino, Gianmaria & Carillo, Adriana, 2015. "Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea," Renewable Energy, Elsevier, vol. 77(C), pages 125-141.
    2. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    3. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    4. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    5. Alamian, Rezvan & Shafaghat, Rouzbeh & Miri, S. Jalal & Yazdanshenas, Nima & Shakeri, Mostafa, 2014. "Evaluation of technologies for harvesting wave energy in Caspian Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 468-476.
    6. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    7. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    8. Zabihian, Farshid & Fung, Alan S., 2011. "Review of marine renewable energies: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2461-2474, June.
    9. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    10. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    11. Rusu, Liliana & Onea, Florin, 2015. "Assessment of the performances of various wave energy converters along the European continental coasts," Energy, Elsevier, vol. 82(C), pages 889-904.
    12. Mackay, Edward B.L. & Bahaj, AbuBakr S. & Challenor, Peter G., 2010. "Uncertainty in wave energy resource assessment. Part 2: Variability and predictability," Renewable Energy, Elsevier, vol. 35(8), pages 1809-1819.
    13. Kim, Gunwoo & Lee, Myung Eun & Lee, Kwang Soo & Park, Jin-Soon & Jeong, Weon Mu & Kang, Sok Kuh & Soh, Jae-Gwi & Kim, Hanna, 2012. "An overview of ocean renewable energy resources in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2278-2288.
    14. Onea, Florin & Rusu, Eugen, 2016. "The expected efficiency and coastal impact of a hybrid energy farm operating in the Portuguese nearshore," Energy, Elsevier, vol. 97(C), pages 411-423.
    15. Leybourne, Mark & Batten, William M.J. & Bahaj, AbuBakr S. & Minns, Ned & O'Nians, Jamie, 2014. "Preliminary design of the OWEL wave energy converter pre-commercial demonstrator," Renewable Energy, Elsevier, vol. 61(C), pages 51-56.
    16. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    17. Tănase Zanopol, Andrei & Onea, Florin & Rusu, Eugen, 2014. "Coastal impact assessment of a generic wave farm operating in the Romanian nearshore," Energy, Elsevier, vol. 72(C), pages 652-670.
    18. Monteforte, M. & Lo Re, C. & Ferreri, G.B., 2015. "Wave energy assessment in Sicily (Italy)," Renewable Energy, Elsevier, vol. 78(C), pages 276-287.
    19. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    20. Mackay, Edward B.L. & Bahaj, AbuBakr S. & Challenor, Peter G., 2010. "Uncertainty in wave energy resource assessment. Part 1: Historic data," Renewable Energy, Elsevier, vol. 35(8), pages 1792-1808.
    21. Quirapas, Mary Ann Joy Robles & Lin, Htet & Abundo, Michael Lochinvar Sim & Brahim, Sahara & Santos, Diane, 2015. "Ocean renewable energy in Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 799-817.
    22. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    23. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    24. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    25. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    26. Iglesias, G. & Carballo, R., 2010. "Offshore and inshore wave energy assessment: Asturias (N Spain)," Energy, Elsevier, vol. 35(5), pages 1964-1972.
    27. Rusu, Eugen & Onea, Florin, 2013. "Evaluation of the wind and wave energy along the Caspian Sea," Energy, Elsevier, vol. 50(C), pages 1-14.
    28. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    29. Ilyas, Arqam & Kashif, Syed A.R. & Saqib, Muhammad A. & Asad, Muhammad M., 2014. "Wave electrical energy systems: Implementation, challenges and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 260-268.
    30. Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.
    31. Zanuttigh, Barbara & Angelelli, Elisa & Kortenhaus, Andreas & Koca, Kaan & Krontira, Yukiko & Koundouri, Phoebe, 2016. "A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting," Renewable Energy, Elsevier, vol. 85(C), pages 1271-1289.
    32. Hadžić, Neven & Kozmar, Hrvoje & Tomić, Marko, 2014. "Offshore renewable energy in the Adriatic Sea with respect to the Croatian 2020 energy strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 597-607.
    33. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    34. Alonso, Rodrigo & Solari, Sebastián & Teixeira, Luis, 2015. "Wave energy resource assessment in Uruguay," Energy, Elsevier, vol. 93(P1), pages 683-696.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    2. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Daniel Ganea & Valentin Amortila & Elena Mereuta & Eugen Rusu, 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    4. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    5. Ramos, V. & Ringwood, John V., 2016. "Exploring the utility and effectiveness of the IEC (International Electrotechnical Commission) wave energy resource assessment and characterisation standard: A case study," Energy, Elsevier, vol. 107(C), pages 668-682.
    6. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    7. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    8. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.
    9. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    10. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    11. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    14. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    15. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    16. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    17. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    18. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    19. Cornejo-Bueno, L. & Nieto-Borge, J.C. & García-Díaz, P. & Rodríguez, G. & Salcedo-Sanz, S., 2016. "Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach," Renewable Energy, Elsevier, vol. 97(C), pages 380-389.
    20. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:1348-1362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.