IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v63y2016icp464-496.html
   My bibliography  Save this article

Solar stills: A comprehensive review of designs, performance and material advances

Author

Listed:
  • Dsilva Winfred Rufuss, D.
  • Iniyan, S.
  • Suganthi, L.
  • Davies, P.A.

Abstract

The demand for fresh water production is growing day by day with the increase in world population and with industrial growth. Use of desalination technology is increasing to meet this demand. Among desalination technologies, solar stills require low maintenance and are readily affordable; however their productivity is limited. This paper aims to give a detailed review about the various types of solar stills, covering passive and active designs, single- and multi-effect types, and the various modifications for improved productivity including reflectors, heat storage, fins, collectors, condensers, and mechanisms for enhancing heat and mass transfer. Photovoltaic–thermal and greenhouse type solar stills are also covered. Material advances in the area of phase change materials and nanocomposites are very promising to enhance further performance; future research should be carried out in these and other areas for the greater uptake of solar still technology.

Suggested Citation

  • Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
  • Handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:464-496
    DOI: 10.1016/j.rser.2016.05.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.05.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madhlopa, A. & Johnstone, C., 2009. "Numerical study of a passive solar still with separate condenser," Renewable Energy, Elsevier, vol. 34(7), pages 1668-1677.
    2. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    3. Rubio-Cerda, Eduardo & Porta-Gándara, Miguel A. & Fernández-Zayas, José L., 2002. "Thermal performance of the condensing covers in a triangular solar still," Renewable Energy, Elsevier, vol. 27(2), pages 301-308.
    4. Kalidasa Murugavel, K. & Srithar, K., 2011. "Performance study on basin type double slope solar still with different wick materials and minimum mass of water," Renewable Energy, Elsevier, vol. 36(2), pages 612-620.
    5. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    6. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    7. Ismail, Basel I., 2009. "Design and performance of a transportable hemispherical solar still," Renewable Energy, Elsevier, vol. 34(1), pages 145-150.
    8. Kaushal, Aayush & Varun, 2010. "Solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 446-453, January.
    9. Halawa, E. & Saman, W., 2011. "Thermal performance analysis of a phase change thermal storage unit for space heating," Renewable Energy, Elsevier, vol. 36(1), pages 259-264.
    10. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    11. Ahmed, M.I. & Hrairi, M. & Ismail, A.F., 2009. "On the characteristics of multistage evacuated solar distillation," Renewable Energy, Elsevier, vol. 34(6), pages 1471-1478.
    12. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    13. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    14. Sharon, H. & Reddy, K.S., 2015. "Performance investigation and enviro-economic analysis of active vertical solar distillation units," Energy, Elsevier, vol. 84(C), pages 794-807.
    15. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    16. Sadineni, S.B. & Hurt, R. & Halford, C.K. & Boehm, R.F., 2008. "Theory and experimental investigation of a weir-type inclined solar still," Energy, Elsevier, vol. 33(1), pages 71-80.
    17. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    18. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    19. Manikandan, V. & Shanmugasundaram, K. & Shanmugan, S. & Janarthanan, B. & Chandrasekaran, J., 2013. "Wick type solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 322-335.
    20. Arunkumar, T. & Velraj, R. & Denkenberger, D.C. & Sathyamurthy, Ravishankar & Kumar, K. Vinoth & Ahsan, Amimul, 2016. "Productivity enhancements of compound parabolic concentrator tubular solar stills," Renewable Energy, Elsevier, vol. 88(C), pages 391-400.
    21. Sinha, S. & Kumar, Sanjay, 1994. "Theoretical evaluation of air regenerative solar distiller integrated with aspirator," Renewable Energy, Elsevier, vol. 4(3), pages 311-318.
    22. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    23. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    24. Sampathkumar, K. & Arjunan, T.V. & Pitchandi, P. & Senthilkumar, P., 2010. "Active solar distillation--A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1503-1526, August.
    25. Ali Samee, Muhammad & Mirza, Umar K. & Majeed, Tariq & Ahmad, Nasir, 2007. "Design and performance of a simple single basin solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 543-549, April.
    26. Abdel-Rehim, Zeinab S. & Lasheen, Ashraf, 2005. "Improving the performance of solar desalination systems," Renewable Energy, Elsevier, vol. 30(13), pages 1955-1971.
    27. Minasian, A.N. & Al-Karaghouli, A.A., 1992. "Floating vertical solar still for desalination of marsh water," Renewable Energy, Elsevier, vol. 2(6), pages 631-635.
    28. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    29. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    30. Velmurugan, V. & Naveen Kumar, K.J. & Noorul Haq, T. & Srithar, K., 2009. "Performance analysis in stepped solar still for effluent desalination," Energy, Elsevier, vol. 34(9), pages 1179-1186.
    31. Kalaiselvam, S. & Parameshwaran, R. & Harikrishnan, S., 2012. "Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings," Renewable Energy, Elsevier, vol. 39(1), pages 375-387.
    32. Rahim, N.H.A., 2003. "New method to store heat energy in horizontal solar desalination still," Renewable Energy, Elsevier, vol. 28(3), pages 419-433.
    33. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    34. Rajaseenivasan, T. & Murugavel, K. Kalidasa & Elango, T. & Hansen, R. Samuel, 2013. "A review of different methods to enhance the productivity of the multi-effect solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 248-259.
    35. Velmurugan, V. & Srithar, K., 2011. "Performance analysis of solar stills based on various factors affecting the productivity--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1294-1304, February.
    36. Aboul-Enein, S. & El-Sebaii, A.A. & El-Bialy, E., 1998. "Investigation of a single-basin solar still with deep basins," Renewable Energy, Elsevier, vol. 14(1), pages 299-305.
    37. Mehrali, Mohammad & Latibari, Sara Tahan & Mehrali, Mehdi & Indra Mahlia, Teuku Meurah & Cornelis Metselaar, Hendrik Simon, 2013. "Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials," Energy, Elsevier, vol. 58(C), pages 628-634.
    38. Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
    39. Wang, Yi & Xia, Tian Dong & Feng, Hui Xia & Zhang, Han, 2011. "Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 36(6), pages 1814-1820.
    40. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    41. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    4. repec:eur:ejfejr:52 is not listed on IDEAS
    5. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    6. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    8. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    10. repec:eur:ejfejr:47 is not listed on IDEAS
    11. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    12. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Abbas Sahi Shareef & Hayder Jabbar Kurji & Ali Bani Khassaf & Iman M Abd Zaid, 2022. "Technologies for Purified Water Extraction Using Single-Slope Solar Stills Equipped With Magnets and Graphite Fins," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(10), pages 01-08, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    2. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    3. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    4. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    5. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    6. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    7. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    8. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    9. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Vishwanath Kumar, P. & Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2015. "Solar stills system design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 153-181.
    11. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.
    12. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    13. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    14. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    15. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    16. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    17. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    18. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    20. Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:464-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.