IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v114y2014icp924-930.html
   My bibliography  Save this article

Parameters affecting the performance of a low cost solar still

Author

Listed:
  • Ahsan, A.
  • Imteaz, M.
  • Thomas, U.A.
  • Azmi, M.
  • Rahman, A.
  • Nik Daud, N.N.

Abstract

This study aims at developing a low cost technique to be used in rural and coastal areas for converting saline water into potable water using solar energy. A triangular solar still (TrSS) was, therefore, designed and developed with cheap, lightweight, local and available materials. A number of field experiments were carried out to evaluate the effects of solar radiation intensity, ambient air temperature and the initial water depth on the daily water production of the TrSS. A time lag of about and hour between the hourly peaks of solar radiation and water production is observed. Finally, a few essential relationships were attained, e.g. between the daily production and the initial water depth, between the daily production and daily solar radiation, and between the daily production and the average ambient temperature. The effect of the initial water depth in the basin on the daily water productivity was evaluated by varying the water depths (1.5, 2.5 and 5cm) with the climatic condition of Malaysia and an inverse proportional relationship was revealed between them. However, the daily water productivity is nearly proportional to the daily solar radiation. In addition, some important water quality parameters were tested in the laboratory to evaluate the distillate quality and were then compared with the drinking water standards.

Suggested Citation

  • Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:924-930
    DOI: 10.1016/j.apenergy.2013.08.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    2. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    3. Gaur, M.K. & Tiwari, G.N., 2010. "Optimization of number of collectors for integrated PV/T hybrid active solar still," Applied Energy, Elsevier, vol. 87(5), pages 1763-1772, May.
    4. Dev, Rahul & Abdul-Wahab, Sabah A. & Tiwari, G.N., 2011. "Performance study of the inverted absorber solar still with water depth and total dissolved solid," Applied Energy, Elsevier, vol. 88(1), pages 252-264, January.
    5. Tsilingiris, P.T., 2011. "The glazing temperature measurement in solar stills – Errors and implications on performance evaluation," Applied Energy, Elsevier, vol. 88(12), pages 4936-4944.
    6. Onyegegbu, S.O., 1986. "Nocturnal distillation in basin-type solar stills," Applied Energy, Elsevier, vol. 24(1), pages 29-42.
    7. Arunkumar, T. & Jayaprakash, R. & Ahsan, Amimul & Denkenberger, D. & Okundamiya, M.S., 2013. "Effect of water and air flow on concentric tubular solar water desalting system," Applied Energy, Elsevier, vol. 103(C), pages 109-115.
    8. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    9. Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
    10. Mohamad, M. A. & Soliman, S. H. & Abdel-Salam, M. S. & Hussein, H. M. S., 1995. "Experimental and financial investigation of asymmetrical solar stills with different insulation," Applied Energy, Elsevier, vol. 52(2-3), pages 265-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    2. Ali Riahi & Nor Azazi Zakaria & Mohamed Hasnain Isa & Khamaruzaman Wan Yusof & Balbir Singh Mahinder Singh & Zahiraniza Mustaffa & Husna Takaijudin, 2019. "Performance investigation of a solar still having polythene film cover and black painted stainless steel basin integrated with a photovoltaic module–direct current heater," Energy & Environment, , vol. 30(8), pages 1521-1535, December.
    3. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    4. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    5. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    6. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    7. Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.
    8. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    9. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    10. El-Bialy, E., 2014. "Performance analysis for passive single slope single basin solar distiller with a floating absorber – An experimental study," Energy, Elsevier, vol. 68(C), pages 117-124.
    11. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    12. Gang, Wu & Qichang, Yang & Hongfei, Zheng & Yi, Zhang & Hui, Fang & Rihui, Jin, 2019. "Direct utilization of solar linear Fresnel reflector on multi-effect eccentric horizontal tubular still with falling film," Energy, Elsevier, vol. 170(C), pages 170-184.
    13. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    14. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    15. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    16. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    17. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    18. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    19. Bhardwaj, R. & ten Kortenaar, M.V. & Mudde, R.F., 2015. "Maximized production of water by increasing area of condensation surface for solar distillation," Applied Energy, Elsevier, vol. 154(C), pages 480-490.
    20. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    21. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    22. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Andrei Victor Sandu & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Mohd Sharizal Abdul Aziz & Norazian Mohamed Noor & Petrica Vizureanu , 2022. "Clean Water Production Enhancement through the Integration of Small-Scale Solar Stills with Solar Dish Concentrators (SDCs)—A Review," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    23. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    2. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    3. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    4. Arunkumar, T. & Jayaprakash, R. & Ahsan, Amimul & Denkenberger, D. & Okundamiya, M.S., 2013. "Effect of water and air flow on concentric tubular solar water desalting system," Applied Energy, Elsevier, vol. 103(C), pages 109-115.
    5. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    6. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    8. Xie, Guo & Sun, Licheng & Mo, Zhengyu & Liu, Hongtao & Du, Min, 2016. "Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills," Applied Energy, Elsevier, vol. 179(C), pages 972-984.
    9. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    10. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    11. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    12. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    13. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    14. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    15. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    16. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    17. Bhardwaj, R. & ten Kortenaar, M.V. & Mudde, R.F., 2015. "Maximized production of water by increasing area of condensation surface for solar distillation," Applied Energy, Elsevier, vol. 154(C), pages 480-490.
    18. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    19. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    20. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:924-930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.