IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1082-1094.html
   My bibliography  Save this article

Trends and challenges of grid-connected photovoltaic systems – A review

Author

Listed:
  • Obi, Manasseh
  • Bass, Robert

Abstract

This paper presents a literature review of the recent developments and trends pertaining to Grid-Connected Photovoltaic Systems (GCPVS). In countries with high penetration of Distributed Generation (DG) resources, GCPVS have been shown to cause inadvertent stress on the electrical grid. A review of the existing and future standards that addresses the technical challenges associated with the growing number of GCPVS is presented. Maximum Power Point Tracking (MPPT), Solar Tracking (ST) and the use of transformless inverters can all lead to high efficiency gains of Photovoltaic (PV) systems while ensuring minimal interference with the grid. Inverters that support ancillary services like reactive power control, frequency regulation and energy storage are critical for mitigating the challenges caused by the growing adoption of GCPVS.

Suggested Citation

  • Obi, Manasseh & Bass, Robert, 2016. "Trends and challenges of grid-connected photovoltaic systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1082-1094.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1082-1094
    DOI: 10.1016/j.rser.2015.12.289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211501672X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lalili, D. & Mellit, A. & Lourci, N. & Medjahed, B. & Berkouk, E.M., 2011. "Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter," Renewable Energy, Elsevier, vol. 36(12), pages 3282-3291.
    2. Hassaine, L. & OLias, E. & Quintero, J. & Salas, V., 2014. "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 796-807.
    3. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    4. Yang, Chi-Jen, 2010. "Reconsidering solar grid parity," Energy Policy, Elsevier, vol. 38(7), pages 3270-3273, July.
    5. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    6. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    7. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    8. Dounis, Anastasios I. & Kofinas, Panagiotis & Alafodimos, Constantine & Tseles, Dimitrios, 2013. "Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system," Renewable Energy, Elsevier, vol. 60(C), pages 202-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    2. Dusonchet, L. & Favuzza, S. & Massaro, F. & Telaretti, E. & Zizzo, G., 2019. "Technological and legislative status point of stationary energy storages in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 158-167.
    3. Wonchang Hur & Yongma Moon & Kwangsup Shin & Wooje Kim & Suchul Nam & Kijun Park, 2015. "Economic Value of Li-ion Energy Storage System in Frequency Regulation Application from Utility Firm’s Perspective in Korea," Energies, MDPI, vol. 8(6), pages 1-18, May.
    4. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    5. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    6. Telaretti, E. & Dusonchet, L., 2017. "Stationary battery technologies in the U.S.: Development Trends and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 380-392.
    7. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    8. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    9. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    10. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    11. Ikechi Emmanuel, Michael & Denholm, Paul, 2022. "A market feedback framework for improved estimates of the arbitrage value of energy storage using price-taker models," Applied Energy, Elsevier, vol. 310(C).
    12. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    13. Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
    14. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2017. "Profitability, risk, and financial modeling of energy storage in residential and large scale applications," Energy, Elsevier, vol. 119(C), pages 94-109.
    15. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    16. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Comprehensive overview of grid interfaced solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 316-332.
    17. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    18. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
    19. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    20. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1082-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.