IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp537-549.html
   My bibliography  Save this article

Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program

Author

Listed:
  • Abdul Quader, M.
  • Ahmed, Shamsuddin
  • Dawal, S.Z.
  • Nukman, Y.

Abstract

The iron and steel industry is the largest energy consuming manufacturing sector, consuming 5% of the world׳s total energy consumption and producing 6% of the total world anthropogenic CO2 emission. Under the European Ultra Low CO2 Steelmaking (ULCOS) program, several breakthrough technologies for the drastic reduction of CO2 emissions from iron and steelmaking industry have been investigated, including (1) blast furnace with top-gas recycling (TGR-BF),(2) a new smelting reduction process (HIsarna), (3) advanced direct reduction (ULCORED) and (4) electrolysis of iron ore (ULCOWIN and ULCOLYSIS). Besides, hydrogen-based steel making and the use of biomass as reducing agent have been evaluated as supporting technology to decrease CO2 emissions. The aim of the present article is to analyze the technological developments in iron and steel industry and the progress of present experimental works developed inside the ULCOS I and II projects by collating updated information from a wide range of sources. In addition, the breakthrough technologies expected to develop or are currently being demonstrated at pilot/industrial scale for significant reduction of CO2 emissions in Europe have been identified in this paper. Economic and environmental performance of the ULCOS cutting edge technologies shows that the implementation of CCS technology in coal-based integrated steel plants might reduce 80% of CO2 emissions. However, hydrogen and biomass-based steelmaking also offers very attractive perspectives, while raising lots of major challenges. Finally, comparative assessment of the ULCOS program with others CO2 breakthrough programs around the world has also been done.

Suggested Citation

  • Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:537-549
    DOI: 10.1016/j.rser.2015.10.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Xing L. & Kasahara, Seiji & Tachibana, Yukio & Kunitomi, Kazuhiko, 2012. "Study of a nuclear energy supplied steelmaking system for near-term application," Energy, Elsevier, vol. 39(1), pages 154-165.
    2. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
    3. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    4. Rootzén, Johan & Johnsson, Filip, 2013. "Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough," Energy Policy, Elsevier, vol. 59(C), pages 443-458.
    5. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
    6. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    7. Siitonen, Sari & Tuomaala, Mari & Ahtila, Pekka, 2010. "Variables affecting energy efficiency and CO2 emissions in the steel industry," Energy Policy, Elsevier, vol. 38(5), pages 2477-2485, May.
    8. Thompson, Shirley & Si, Minxing, 2014. "Strategic analysis of energy efficiency projects: Case study of a steel mill in Manitoba," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 814-819.
    9. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    3. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    4. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    5. Shijie Ding & Jing Zhao & Meng Zhang & Sheng Yang & Hongwei Zhang, 2022. "Measuring the environmental protection efficiency and productivity of the 49 largest iron and steel enterprises in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 454-472, January.
    6. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    7. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    9. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    10. Guanyong Sun & Bin Li & Hanjie Guo & Wensheng Yang & Shaoying Li & Jing Guo, 2021. "Thermodynamic Study of Energy Consumption and Carbon Dioxide Emission in Ironmaking Process of the Reduction of Iron Oxides by Carbon," Energies, MDPI, vol. 14(7), pages 1-29, April.
    11. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    12. Venkataraman, Mahesh & Csereklyei, Zsuzsanna & Aisbett, Emma & Rahbari, Alireza & Jotzo, Frank & Lord, Michael & Pye, John, 2022. "Zero-carbon steel production: The opportunities and role for Australia," Energy Policy, Elsevier, vol. 163(C).
    13. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    15. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
    16. Yuan, Peng & Shen, Boxiong & Duan, Dongping & Adwek, George & Mei, Xue & Lu, Fengju, 2017. "Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process," Energy, Elsevier, vol. 141(C), pages 472-482.
    17. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
    2. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    3. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
    4. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    6. Zetterholm, J. & Ji, X. & Sundelin, B. & Martin, P.M. & Wang, C., 2017. "Dynamic modelling for the hot blast stove," Applied Energy, Elsevier, vol. 185(P2), pages 2142-2150.
    7. Rodrigues, Thaisa & Braghini Junior, Aldo, 2019. "Technological prospecting in the production of charcoal: A patent study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 170-183.
    8. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    9. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    10. Porzio, Giacomo Filippo & Nastasi, Gianluca & Colla, Valentina & Vannucci, Marco & Branca, Teresa Annunziata, 2014. "Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork," Applied Energy, Elsevier, vol. 136(C), pages 1085-1097.
    11. Rootzén, Johan & Johnsson, Filip, 2015. "CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?," Energy, Elsevier, vol. 80(C), pages 715-730.
    12. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    16. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    17. Matino, Ismael & Dettori, Stefano & Colla, Valentina & Weber, Valentine & Salame, Sahar, 2019. "Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    19. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    20. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:537-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.