IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v47y2015icp186-197.html
   My bibliography  Save this article

Hybridization of concentrated solar power plants with biogas production systems as an alternative to premiums: The case of Spain

Author

Listed:
  • Colmenar-Santos, Antonio
  • Bonilla-Gómez, José-Luis
  • Borge-Diez, David
  • Castro-Gil, Manuel

Abstract

The present research explains and analyses a technically feasible and economically profitable alternative for concentrated solar power plants recently constructed in Spain. The proposed solution is hybridization with biogas. The method is more economical than investment in salt storage systems, used to improve operation time and a better electrical production control. This alternative proposes new income alternatives for plants by using residual heat in flue gases from boilers and in the cooling circuit in the power block, thereby achieving an effective reduction in the final cost of electric power generation. Current commercial technologies used in the bio-digestion process of organic waste are studied and practical cases that can be best integrated are analyzed. Presented case studies are presented for solar power plants without storage analyzing waste availability for biogas production. Areas with the greatest potential for the implementation of the proposed alternative and improvements aimed at increasing the overall performance of future hybrid plants are also determined, and an economic evaluation of the proposed solution versus salt storage is conducted. To improve research results a sensitivity analysis to evaluate the feasibility in different economic scenarios is performed. Results show that the proposed method of hybridization through the use of biogas provides an alternative solution for an important part of renewable generation power plants with a limited ability for dispatchability. In terms of environmental issues the solution places a value on certain types of waste that today, in addition to not being utilized properly, pose a serious problem for society.

Suggested Citation

  • Colmenar-Santos, Antonio & Bonilla-Gómez, José-Luis & Borge-Diez, David & Castro-Gil, Manuel, 2015. "Hybridization of concentrated solar power plants with biogas production systems as an alternative to premiums: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 186-197.
  • Handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:186-197
    DOI: 10.1016/j.rser.2015.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115002142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2006. "The Kyoto mechanisms and technological innovation," Energy, Elsevier, vol. 31(13), pages 2325-2332.
    2. Tempesti, Duccio & Fiaschi, Daniele, 2013. "Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy," Energy, Elsevier, vol. 58(C), pages 45-51.
    3. Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    2. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    3. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    4. Mauricio Bustamante & Abraham Engeda & Wei Liao, 2021. "Small-Scale Solar–Bio-Hybrid Power Generation Using Brayton and Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-16, January.
    5. Díaz Pérez, Álvaro A. & Burin, Eduardo Konrad & Bazzo, Edson, 2023. "Part load operation analysis of a biomass steam generator integrated with a Linear Fresnel solar field," Energy, Elsevier, vol. 282(C).
    6. Gurinderpal Singh & VK Jain & Amanpreet Singh, 2018. "Adaptive network architecture and firefly algorithm for biogas heating model aided by photovoltaic thermal greenhouse system," Energy & Environment, , vol. 29(7), pages 1073-1097, November.
    7. Henry Wasajja & Saqr A. A. Al-Muraisy & Antonella L. Piaggio & Pamela Ceron-Chafla & Purushothaman Vellayani Aravind & Henri Spanjers & Jules B. van Lier & Ralph E. F. Lindeboom, 2021. "Improvement of Biogas Quality and Quantity for Small-Scale Biogas-Electricity Generation Application in off-Grid Settings: A Field-Based Study," Energies, MDPI, vol. 14(11), pages 1-20, May.
    8. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    9. Petrollese, Mario & Cocco, Daniele, 2020. "Techno-economic assessment of hybrid CSP-biogas power plants," Renewable Energy, Elsevier, vol. 155(C), pages 420-431.
    10. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    3. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    5. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    6. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    7. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    8. IlkIlIç, Cumali & AydIn, Hüseyin & Behçet, Rasim, 2011. "The current status of wind energy in Turkey and in the world," Energy Policy, Elsevier, vol. 39(2), pages 961-967, February.
    9. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    10. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul & Aghili, Nasim, 2013. "The scenario of greenhouse gases reduction in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 400-409.
    11. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    12. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    13. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    14. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    15. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    16. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    17. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    18. Park, Taeil & Kim, Changyoon & Kim, Hyoungkwan, 2014. "A real option-based model to valuate CDM projects under uncertain energy policies for emission trading," Applied Energy, Elsevier, vol. 131(C), pages 288-296.
    19. İlkiliç, Cumali, 2012. "Wind energy and assessment of wind energy potential in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1165-1173.
    20. James, Christina Anne & Kavanagh, Marie & Manton, Carl & Soar, Jeffrey, 2023. "Revisiting recycled water for the next drought; a case study of South East Queensland, Australia," Utilities Policy, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:186-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.