IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp45-51.html
   My bibliography  Save this article

Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy

Author

Listed:
  • Tempesti, Duccio
  • Fiaschi, Daniele

Abstract

A micro combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC) using renewable energy is analysed. The reference system is designed to produce 50 kWe. The heat sources of the system are geothermal energy at low temperature (80–100 °C) and solar energy. The system uses a solar field composed only by evacuated solar collectors, and work is produced by a single turbine. Different working fluids (e.g. R134a, R236fa, R245fa) are considered in the analysis. The aim of this paper is to assess the cost of the proposed CHP plant and to determine the most convenient working fluid through a thermo-economic analysis. The system is sized in base of the weather data of a city in the centre of Italy in three different months (January, March, July), and the main characteristics of the system (i.e. heat exchanger surface, solar collector area) are presented. The results of the thermo-economic analysis show that R245fa allows the lowest price of electricity production and the lowest overall cost of the CHP plant.

Suggested Citation

  • Tempesti, Duccio & Fiaschi, Daniele, 2013. "Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy," Energy, Elsevier, vol. 58(C), pages 45-51.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:45-51
    DOI: 10.1016/j.energy.2013.01.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    2. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    3. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    4. Hang, Yin & Qu, Ming & Zhao, Fu, 2011. "Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California," Renewable Energy, Elsevier, vol. 36(2), pages 648-658.
    5. Vaja, Iacopo & Gambarotta, Agostino, 2010. "Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 35(2), pages 1084-1093.
    6. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    7. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    8. Bruhn, Matthias, 2002. "Hybrid geothermal–fossil electricity generation from low enthalpy geothermal resources: geothermal feedwater preheating in conventional power plants," Energy, Elsevier, vol. 27(4), pages 329-346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talluri, L. & Fiaschi, D. & Neri, G. & Ciappi, L., 2018. "Design and optimization of a Tesla turbine for ORC applications," Applied Energy, Elsevier, vol. 226(C), pages 300-319.
    2. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    3. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2012. "Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles," Applied Energy, Elsevier, vol. 97(C), pages 601-608.
    4. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2015. "Design and performance prediction of radial ORC turboexpanders," Applied Energy, Elsevier, vol. 138(C), pages 517-532.
    5. Talluri, Lorenzo & Dumont, Olivier & Manfrida, Giampaolo & Lemort, Vincent & Fiaschi, Daniele, 2020. "Geometry definition and performance assessment of Tesla turbines for ORC," Energy, Elsevier, vol. 211(C).
    6. Manfrida, G. & Pacini, L. & Talluri, L., 2018. "An upgraded Tesla turbine concept for ORC applications," Energy, Elsevier, vol. 158(C), pages 33-40.
    7. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    8. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    10. Menberg, Kathrin & Heo, Yeonsook & Choi, Wonjun & Ooka, Ryozo & Choudhary, Ruchi & Shukuya, Masanori, 2017. "Exergy analysis of a hybrid ground-source heat pump system," Applied Energy, Elsevier, vol. 204(C), pages 31-46.
    11. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    12. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    13. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    14. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    15. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    16. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    17. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    18. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    19. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    20. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:45-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.