IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v28y2013icp174-190.html
   My bibliography  Save this article

Review on physical and performance parameters of heat recovery systems for building applications

Author

Listed:
  • Mardiana, A.
  • Riffat, S.B.

Abstract

Owing to global energy crisis, various technical strategies are adopted for energy conservation in buildings through energy-efficient technologies. One of the significant ways for this purpose is by installation or usage of heat or energy recovery device which is known as one of main energy-efficient systems that will decrease the power demands of building heating, cooling, air conditioning and ventilation loads. In order to have an insight into existing knowledge leading to understanding of previous works and researches carried out concerning the area, this paper presents and discusses physical and performance parameters of heat recovery unit and the significances of these parameters on operation and efficiency of the system. In addition, areas that have not received much research attention and that warrant future analysis of this technology are also highlighted.

Suggested Citation

  • Mardiana, A. & Riffat, S.B., 2013. "Review on physical and performance parameters of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 174-190.
  • Handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:174-190
    DOI: 10.1016/j.rser.2013.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113004619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose, Jørgen & Nielsen, Toke Rammer & Kragh, Jesper & Svendsen, Svend, 2008. "Quasi-steady-state model of a counter-flow air-to-air heat-exchanger with phase change," Applied Energy, Elsevier, vol. 85(5), pages 312-325, May.
    2. Duffield, John S. & Woodall, Brian, 2011. "Japan's new basic energy plan," Energy Policy, Elsevier, vol. 39(6), pages 3741-3749, June.
    3. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    4. Hamza, Neveen & Gilroy, Rose, 2011. "The challenge to UK energy policy: An ageing population perspective on energy saving measures and consumption," Energy Policy, Elsevier, vol. 39(2), pages 782-789, February.
    5. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    6. Manan, Zainuddin Abdul & Shiun, Lim Jeng & Alwi, Sharifah Rafidah Wan & Hashim, Haslenda & Kannan, K.S. & Mokhtar, Norhasliza & Ismail, Ahmad Zairin, 2010. "Energy Efficiency Award system in Malaysia for energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2279-2289, October.
    7. Liu, X.H. & Qu, K.Y. & Jiang, Y., 2006. "Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer," Renewable Energy, Elsevier, vol. 31(10), pages 1627-1639.
    8. Elshafei, E.A.M. & Awad, M.M. & El-Negiry, E. & Ali, A.G., 2010. "Heat transfer and pressure drop in corrugated channels," Energy, Elsevier, vol. 35(1), pages 101-110.
    9. Abu-Khader, Mazen M., 2012. "Plate heat exchangers: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1883-1891.
    10. Kong, Xiangfei & Lu, Shilei & Wu, Yong, 2012. "A review of building energy efficiency in China during “Eleventh Five-Year Plan” period," Energy Policy, Elsevier, vol. 41(C), pages 624-635.
    11. Fend, Thomas & Hoffschmidt, Bernhard & Pitz-Paal, Robert & Reutter, Oliver & Rietbrock, Peter, 2004. "Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties," Energy, Elsevier, vol. 29(5), pages 823-833.
    12. Omer, Abdeen Mustafa, 2008. "On the wind energy resources of Sudan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2117-2139, October.
    13. Nóbrega, C.E.L. & Brum, N.C.L., 2009. "Modeling and simulation of heat and enthalpy recovery wheels," Energy, Elsevier, vol. 34(12), pages 2063-2068.
    14. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    15. S. Liu & X. Zhao & S. Riffat & Y. Yuan, 2009. "Comparative study of hydrophilic materials for air-to-air heat/mass exchanger," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(2), pages 120-130, January.
    16. Wallin, Jörgen & Madani, Hatef & Claesson, Joachim, 2012. "Run-around coil ventilation heat recovery system: A comparative study between different system configurations," Applied Energy, Elsevier, vol. 90(1), pages 258-265.
    17. Yau, Y.H. & Hasbi, S., 2013. "A review of climate change impacts on commercial buildings and their technical services in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 430-441.
    18. Srimuang, W. & Amatachaya, P., 2012. "A review of the applications of heat pipe heat exchangers for heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4303-4315.
    19. Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2012. "A review of heat pipe systems for heat recovery and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2249-2259.
    20. Lee, Siew Eang & Rajagopalan, Priyadarsini, 2008. "Building energy efficiency labeling programme in Singapore," Energy Policy, Elsevier, vol. 36(10), pages 3982-3992, October.
    21. Ekins, Paul & Lees, Eoin, 2008. "The impact of EU policies on energy use in and the evolution of the UK built environment," Energy Policy, Elsevier, vol. 36(12), pages 4580-4583, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O’Connor, Dominic & Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A novel design of a desiccant rotary wheel for passive ventilation applications," Applied Energy, Elsevier, vol. 179(C), pages 99-109.
    2. Stefano De Antonellis & Manuel Intini & Cesare Maria Joppolo & Calogero Leone, 2014. "Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems," Energies, MDPI, vol. 7(11), pages 1-20, November.
    3. Kapica, Jacek & Pawlak, Halina & Ścibisz, Marek, 2015. "Carbon dioxide emission reduction by heating poultry houses from renewable energy sources in Central Europe," Agricultural Systems, Elsevier, vol. 139(C), pages 238-249.
    4. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    6. Kazemi, A.R. & Mahbaz, S.B. & Dehghani-Sanij, A.R. & Dusseault, M.B. & Fraser, R., 2019. "Performance Evaluation of an Enhanced Geothermal System in the Western Canada Sedimentary Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Miklos Kassai & Laith Al-Hyari, 2019. "Investigation of Ventilation Energy Recovery with Polymer Membrane Material-Based Counter-Flow Energy Exchanger for Nearly Zero-Energy Buildings," Energies, MDPI, vol. 12(9), pages 1-21, May.
    8. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    2. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    3. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    4. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    5. Albdoor, A.K. & Ma, Z. & Al-Ghazzawi, F. & Arıcı, M., 2022. "Study on recent progress and advances in air-to-air membrane enthalpy exchangers: Materials selection, performance improvement, design optimisation and effects of operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    7. Li, Wuyan & Li, Xianting & Gao, Yijun & Shi, Wenxing, 2022. "Thermo-economic evaluation for energy retrofitting building ventilation system based on run-around heat recovery system," Energy, Elsevier, vol. 260(C).
    8. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    9. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    10. Qian, Suxin & Yu, Jianlin & Yan, Gang, 2017. "A review of regenerative heat exchange methods for various cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 535-550.
    11. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    12. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    13. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    14. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    15. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    16. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    18. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.
    19. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    20. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:174-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.