IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v25y2013icp420-430.html
   My bibliography  Save this article

A review on the methods for biomass to energy conversion systems design

Author

Listed:
  • Yılmaz, Sebnem
  • Selim, Hasan

Abstract

The realization that the level of greenhouse gas (GHG) emissions to the atmosphere is increasing and fossil fuel resources are becoming scarce have increased interest in renewable and sustainable energy systems which use renewable energy sources that are naturally replenished. Production of biofuels from organic material is one of the alternative renewable energy systems. Biofuels can be produced and converted to energy in different kinds of conversion plants with different scales that use various conversion technologies. Before the realization of renewable energy systems investments, carrying out detailed technical and economical feasibility analyses have vital importance. In addition, the most appropriate mix of renewable energy resources and technologies, and optimal plant capacity have to be determined. A well designed energy conversion system can be cost effective, meet economic constraints, use appropriate technologies, has a high reliability and can improve the quality of life. In this regard, various methods can be used to tackle multi dimensionality of the system design problem and the complexity in the technical, economical and social criteria. This study aims to examine the literature on the methods for biomass to energy conversion systems design. To this aim, a comprehensive review is conducted to offer a clear vision of the advances in the field. The studies that are reviewed are classified into three categories; review studies about energy systems, the studies about design of biomass to energy conversion systems and the studies about design of hybrid renewable energy systems that include biomass as an energy source.

Suggested Citation

  • Yılmaz, Sebnem & Selim, Hasan, 2013. "A review on the methods for biomass to energy conversion systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 420-430.
  • Handle: RePEc:eee:rensus:v:25:y:2013:i:c:p:420-430
    DOI: 10.1016/j.rser.2013.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113003183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
    2. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part I: Problem formulation and model development," Renewable Energy, Elsevier, vol. 36(2), pages 459-465.
    3. Silva Herran, Diego & Nakata, Toshihiko, 2012. "Design of decentralized energy systems for rural electrification in developing countries considering regional disparity," Applied Energy, Elsevier, vol. 91(1), pages 130-145.
    4. Karellas, Sotirios & Boukis, Ioannis & Kontopoulos, Georgios, 2010. "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1273-1282, May.
    5. Arcuri, P. & Florio, G. & Fragiacomo, P., 2007. "A mixed integer programming model for optimal design of trigeneration in a hospital complex," Energy, Elsevier, vol. 32(8), pages 1430-1447.
    6. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    7. Huang, J.P. & Poh, K.L. & Ang, B.W., 1995. "Decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 20(9), pages 843-855.
    8. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    9. Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable Energy, Elsevier, vol. 34(7), pages 1855-1862.
    10. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    11. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India," Energy, Elsevier, vol. 36(9), pages 5690-5702.
    12. Frombo, Francesco & Minciardi, Riccardo & Robba, Michela & Sacile, Roberto, 2009. "A decision support system for planning biomass-based energy production," Energy, Elsevier, vol. 34(3), pages 362-369.
    13. Murphy, J.D. & McKeogh, E., 2004. "Technical, economic and environmental analysis of energy production from municipal solid waste," Renewable Energy, Elsevier, vol. 29(7), pages 1043-1057.
    14. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    15. Buchholz, Thomas & Rametsteiner, Ewald & Volk, Timothy A. & Luzadis, Valerie A., 2009. "Multi Criteria Analysis for bioenergy systems assessments," Energy Policy, Elsevier, vol. 37(2), pages 484-495, February.
    16. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun, 2010. "Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics," Energy, Elsevier, vol. 35(5), pages 2210-2222.
    17. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    18. Hokkanen, Joonas & Salminen, Pekka, 1997. "Choosing a solid waste management system using multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 98(1), pages 19-36, April.
    19. Nakata, Toshihiko & Kubo, Kazuo & Lamont, Alan, 2005. "Design for renewable energy systems with application to rural areas in Japan," Energy Policy, Elsevier, vol. 33(2), pages 209-219, January.
    20. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part II: Combined dispatch strategies and solution algorithm," Renewable Energy, Elsevier, vol. 36(2), pages 466-473.
    21. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    22. Raheman, H, 2002. "A mathematical model for fixed dome type biogas plant," Energy, Elsevier, vol. 27(1), pages 25-34.
    23. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    24. Jurado, Francisco & Cano, Antonio & Carpio, José, 2003. "Modelling of combined cycle power plants using biomass," Renewable Energy, Elsevier, vol. 28(5), pages 743-753.
    25. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    26. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    27. Oh, Si-Doek & Lee, Ho-Jun & Jung, Jung-Yeul & Kwak, Ho-Young, 2007. "Optimal planning and economic evaluation of cogeneration system," Energy, Elsevier, vol. 32(5), pages 760-771.
    28. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    29. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    30. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    31. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    32. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    33. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    34. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    35. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    36. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 36(11), pages 2809-2821.
    37. Dinca, Cristian & Badea, Adrian & Rousseaux, Patrick & Apostol, Tiberiu, 2007. "A multi-criteria approach to evaluate the natural gas energy systems," Energy Policy, Elsevier, vol. 35(11), pages 5754-5765, November.
    38. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    39. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    40. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    41. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
    42. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part III: Case study with simulation results," Renewable Energy, Elsevier, vol. 36(2), pages 474-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    4. Mutran, Victoria M. & Ribeiro, Celma O. & Nascimento, Claudio A.O. & Chachuat, Benoît, 2020. "Risk-conscious optimization model to support bioenergy investments in the Brazilian sugarcane industry," Applied Energy, Elsevier, vol. 258(C).
    5. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    6. Jayarathna, Lasinidu & Kent, Geoff & O’Hara, Ian & Hobson, Philip, 2022. "Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia," Land Use Policy, Elsevier, vol. 114(C).
    7. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    8. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    9. Aamer Bilal Asghar & Saad Farooq & Muhammad Shahzad Khurram & Mujtaba Hussain Jaffery & Krzysztof Ejsmont, 2021. "Estimation of the Solid Circulation Rate in Circulating Fluidized Bed System Using Adaptive Neuro-Fuzzy Algorithm," Energies, MDPI, vol. 15(1), pages 1-17, December.
    10. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    11. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
    12. Reddy, K.S. & Aravindhan, S. & Mallick, Tapas K., 2016. "Investigation of performance and emission characteristics of a biogas fuelled electric generator integrated with solar concentrated photovoltaic system," Renewable Energy, Elsevier, vol. 92(C), pages 233-243.
    13. Vikas Menghwani & Chad Walker & Tim Kalke & Bram Noble & Greg Poelzer, 2022. "Harvesting Local Energy: A Case Study of Community-Led Bioenergy Development in Galena, Alaska," Energies, MDPI, vol. 15(13), pages 1-17, June.
    14. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    17. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    18. Kveselis, Vaclovas & Dzenajavičienė, Eugenija Farida & Masaitis, Sigitas, 2017. "Analysis of energy development sustainability: The example of the lithuanian district heating sector," Energy Policy, Elsevier, vol. 100(C), pages 227-236.
    19. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    20. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    21. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    22. Manos, Basil & Bartocci, Pietro & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos, 2014. "Review of public–private partnerships in agro-energy districts in Southern Europe: The cases of Greece and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 667-678.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    2. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    4. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    5. Chauhan, Anurag & Saini, R.P., 2017. "Size optimization and demand response of a stand-alone integrated renewable energy system," Energy, Elsevier, vol. 124(C), pages 59-73.
    6. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    9. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    10. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    11. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    12. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    13. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    14. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Xutao & Zhang, Chunfa, 2011. "Sensitivity analysis of optimal model on building cooling heating and power system," Applied Energy, Elsevier, vol. 88(12), pages 5143-5152.
    15. Wang, Q. & Poh, K.L., 2014. "A survey of integrated decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 77(C), pages 691-702.
    16. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    17. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    18. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    20. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:25:y:2013:i:c:p:420-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.