IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i6p4116-4125.html
   My bibliography  Save this article

Economic analysis of heating and cooling systems from the various perspectives: Application to EHP and GHP in Korea

Author

Listed:
  • Lee, Woo-Nam
  • Kim, Hyeong-Jung
  • Park, Jong-Bae
  • Cho, Ki-Seon
  • Roh, Jae Hyung
  • Son, Sung-Yong

Abstract

Energy flow from the primary energy to the final energy use varies depending on which device is used for the heating and cooling energy service. This paper presents economic analyses of medium capacity space heating and cooling systems from three perspectives – primary energy, final consumer, and social cost perspective. From the analysis results of primary energy and final consumer perspective, electric heat pump (EHP) system is found to be superior to the gas engine driven heat pump (GHP) system for the energy consumption and cost-effectiveness due to its higher system efficiency. However, the result of social cost perspective shows the GHP system is superior to the EHP system considering incurred incremental electricity generation capacity construction cost and avoided gas storage tank construction cost due to a new installation of each system. And this paper suggests three analysis methodologies – the primary energy, final consumer, and social cost perspective – can be used for developing various measures and policies for integrated demand side management.

Suggested Citation

  • Lee, Woo-Nam & Kim, Hyeong-Jung & Park, Jong-Bae & Cho, Ki-Seon & Roh, Jae Hyung & Son, Sung-Yong, 2012. "Economic analysis of heating and cooling systems from the various perspectives: Application to EHP and GHP in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4116-4125.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:6:p:4116-4125
    DOI: 10.1016/j.rser.2012.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julien Chevallier, 2010. "Carbon Prices during the EU ETS Phase II: Dynamics and Volume Analysis," Working Papers halshs-00459140, HAL.
    2. Hepbasli, Arif & Erbay, Zafer & Icier, Filiz & Colak, Neslihan & Hancioglu, Ebru, 2009. "A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 85-99, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    2. Song, Jeonghun & Song, Seung Jin & Oh, Si-Deok & Yoo, Yungpil, 2015. "Evaluation of potential fossil fuel conservation by the renewable heat obligation in Korea," Renewable Energy, Elsevier, vol. 79(C), pages 140-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    2. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    3. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    4. Guy Meunier, 2015. "Prices vs. quantities in presence of a second, unpriced, externality," Working Papers hal-01242040, HAL.
    5. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    6. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    7. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    8. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    9. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    10. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    11. Sanz, Nicolas & Schwartz, Sonia, 2013. "Are pollution permit markets harmful for employment?," Economic Modelling, Elsevier, vol. 35(C), pages 374-383.
    12. Kang, Shushuo & Li, Hongqiang & Lei, Jing & Liu, Lifang & Cai, Bo & Zhang, Guoqiang, 2015. "A new utilization approach of the waste heat with mid-low temperature in the combined heating and power system integrating heat pump," Applied Energy, Elsevier, vol. 160(C), pages 185-193.
    13. Yang, Zhao & Cheng, Heng & Wu, Xi & Chen, Yiguang, 2011. "Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP," Energy Policy, Elsevier, vol. 39(9), pages 5192-5202, September.
    14. Ximei Li & Jianmin Gao & Yaning Zhang & Yu Zhang & Qian Du & Shaohua Wu & Yukun Qin, 2020. "Energy, Exergy and Economic Analyses of a Combined Heating and Power System with Turbine-Driving Fans and Pumps in Northeast China," Energies, MDPI, vol. 13(4), pages 1-22, February.
    15. Sanaye, Sepehr & Chahartaghi, Mahmood, 2010. "Thermal modeling and operating tests for the gas engine-driven heat pump systems," Energy, Elsevier, vol. 35(1), pages 351-363.
    16. Yilmaz, Saban & Binici, Hanifi & Ozcalik, Hasan Riza, 2016. "Energy supply in a green school via a photovoltaic-thermal power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 713-720.
    17. Carlo Roselli & Elisa Marrasso & Maurizio Sasso, 2021. "Gas Engine-Driven Heat Pumps for Small-Scale Applications: State-of-the-Art and Future Perspectives," Energies, MDPI, vol. 14(16), pages 1-73, August.
    18. Staffell, Iain, 2015. "Zero carbon infinite COP heat from fuel cell CHP," Applied Energy, Elsevier, vol. 147(C), pages 373-385.
    19. Elgendy, E. & Schmidt, J., 2010. "Experimental study of gas engine driven air to water heat pump in cooling mode," Energy, Elsevier, vol. 35(6), pages 2461-2467.
    20. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:6:p:4116-4125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.