IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics136403212200507x.html
   My bibliography  Save this article

Thermal districts in Colombia: Developing a methodology to estimate the cooling potential demand

Author

Listed:
  • Ríos-Ocampo, J.P.
  • Olaya, Y.
  • Osorio, A.
  • Henao, D.
  • Smith, R.
  • Arango-Aramburo, S.

Abstract

Thermal Districts have been presented globally as an efficient alternative to supply the demand for cooling and heating in urban areas. The development of thermal districts has been slow due to the uncertainty of demand and the lack of methods for estimating potential demands. However, the information needed for estimating district cooling potential is scarce in many cities, and the existing methodologies need to be adapted to specific conditions. This paper develops a methodology to estimate the potential for developing district cooling based on cities' climate and economic activities. The proposed methodology is applied in 13 Colombian metropolitan areas to identify potential clusters for district cooling according to the geographical distribution of buildings. The results show that the total potential demand for cooling in the 13 cities in Colombia is almost 650 MW. This paper concludes that demand for cooling that could be supplied with the implementation of tailor-made district cooling designed using the local economic characteristics of the cities through the 37 emerging clusters.

Suggested Citation

  • Ríos-Ocampo, J.P. & Olaya, Y. & Osorio, A. & Henao, D. & Smith, R. & Arango-Aramburo, S., 2022. "Thermal districts in Colombia: Developing a methodology to estimate the cooling potential demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s136403212200507x
    DOI: 10.1016/j.rser.2022.112612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212200507X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    2. Osorio, A.F. & Ortega, Santiago & Arango-Aramburo, Santiago, 2016. "Assessment of the marine power potential in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 966-977.
    3. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    4. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    5. Osorio, Andrés F. & Arias-Gaviria, Jessica & Devis-Morales, Andrea & Acevedo, Diego & Velasquez, Héctor Iván & Arango-Aramburo, Santiago, 2016. "Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands," Energy Policy, Elsevier, vol. 98(C), pages 713-724.
    6. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    7. Werner, Sven, 2016. "European space cooling demands," Energy, Elsevier, vol. 110(C), pages 148-156.
    8. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    9. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    10. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    11. Arango-Aramburo, S. & Ríos-Ocampo, J.P. & Larsen, E.R., 2020. "Examining the decreasing share of renewable energy amid growing thermal capacity: The case of South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    13. Hunt, Julian David & Byers, Edward & Sánchez, Antonio Santos, 2019. "Technical potential and cost estimates for seawater air conditioning," Energy, Elsevier, vol. 166(C), pages 979-988.
    14. Leurent, Martin, 2019. "Analysis of the district heating potential in French regions using a geographic information system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Arango-Aramburo, Santiago & Turner, Sean W.D. & Daenzer, Kathryn & Ríos-Ocampo, Juan Pablo & Hejazi, Mohamad I. & Kober, Tom & Álvarez-Espinosa, Andrés C. & Romero-Otalora, Germán D. & van der Zwaan, , 2019. "Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways," Energy Policy, Elsevier, vol. 128(C), pages 179-188.
    16. Udomsri, Seksan & Martin, Andrew R. & Martin, Viktoria, 2011. "Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas," Applied Energy, Elsevier, vol. 88(5), pages 1532-1542, May.
    17. Pardo, Nicolas & Vatopoulos, Kostantinos & Riekkola, Anna Krook & Perez, Alicia, 2013. "Methodology to estimate the energy flows of the European Union heating and cooling market," Energy, Elsevier, vol. 52(C), pages 339-352.
    18. Jakubcionis, Mindaugas & Carlsson, Johan, 2017. "Estimation of European Union residential sector space cooling potential," Energy Policy, Elsevier, vol. 101(C), pages 225-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Ruiz, Yessenia & Manotas-Duque, Diego Fernando & Ramírez-Malule, Howard, 2023. "Financial risk assessment of a district cooling system," Energy, Elsevier, vol. 278(PA).
    2. Haiyan Meng & Yakai Lu & Zhe Tian & Xiangbei Jiang & Zhongqing Han & Jide Niu, 2023. "Performance Evaluation Method of Day-Ahead Load Prediction Models in a District Heating and Cooling System: A Case Study," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    3. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    4. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    5. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    6. Jakubcionis, Mindaugas & Carlsson, Johan, 2018. "Estimation of European Union service sector space cooling potential," Energy Policy, Elsevier, vol. 113(C), pages 223-231.
    7. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    8. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    9. Rabah Ismaen & Tarek Y. ElMekkawy & Shaligram Pokharel & Adel Elomri & Mohammed Al-Salem, 2022. "Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection," Energies, MDPI, vol. 15(7), pages 1-24, April.
    10. Sun, Fangtian & Li, Junlong & Fu, Lin & Li, Yonghong & Wang, Ruixiang & Zhang, Shigang, 2020. "New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens," Energy, Elsevier, vol. 193(C).
    11. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2019. "Potential of District Cooling Systems: A Case Study on Recovering Cold Energy from Liquefied Natural Gas Vaporization," Energies, MDPI, vol. 12(15), pages 1-13, August.
    12. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    15. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    16. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    17. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).
    18. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    19. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    20. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s136403212200507x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.