IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122001071.html
   My bibliography  Save this article

A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development

Author

Listed:
  • Correa-Cano, M.E.
  • Salmoral, G.
  • Rey, D.
  • Knox, J.W.
  • Graves, A.
  • Melo, O.
  • Foster, W.
  • Naranjo, L.
  • Zegarra, E.
  • Johnson, C.
  • Viteri-Salazar, O.
  • Yan, X.

Abstract

Increasing food demand has led to significant agricultural expansion globally with negative impacts on resources and the environment, a perfect manifestation of the Water-Energy-Food-Environment nexus. Whilst many tools have been developed to understand the complexity of the Water-Energy-Food-Environment nexus most have failed to explicitly consider biophysical and socio-economic aspects simultaneously. A novel Water-Energy-Food-Environment modelling toolkit is developed that integrates both these components by combining different modelling approaches including irrigation simulation, economic modelling and life cycle environmental assessment. The toolkit is demonstrated using two major agro-export crops (asparagus and table grapes) in the Ica Valley, Peru, a severely water-stressed region. The toolkit was able to provide novel insights into the implications of different farming practices on resource efficiency at the field level in relation to water and energy, under contrasting future scenarios reflecting socio-economic outcomes at the local to regional levels (e.g., food prices, employment, and income) as well as environmental impacts at local to global scales. This information enables different stakeholders to better understand the interlinkages and inter-dependences between the Water-Energy-Food-Environment nexus elements and the complex impacts of agricultural expansion beyond the immediate sector and its geographical extent, helping decision makers design more coordinated agricultural policies and support sustainable agricultural transformation.

Suggested Citation

  • Correa-Cano, M.E. & Salmoral, G. & Rey, D. & Knox, J.W. & Graves, A. & Melo, O. & Foster, W. & Naranjo, L. & Zegarra, E. & Johnson, C. & Viteri-Salazar, O. & Yan, X., 2022. "A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001071
    DOI: 10.1016/j.rser.2022.112182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    2. Zegarra Méndez, Eduardo, 2018. "La gestión del agua desde el punto de vista del Nexo entre el agua, la energía y la alimentación en el Perú: estudio de caso del valle de Ica," Documentos de Proyectos 44219, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    3. Florian Zabel & Ruth Delzeit & Julia M. Schneider & Ralf Seppelt & Wolfram Mauser & Tomáš Václavík, 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Nabil Chaherli & John Nash, 2013. "Agricultural Exports from Latin America and the Caribbean : Harnessing Trade to Feed the World and Promote Development," World Bank Publications - Reports 16048, The World Bank Group.
    5. Gerardo Damonte & Rutgerd Boelens, 2019. "Hydrosocial territories, agro-export and water scarcity: capitalist territorial transformations and water governance in Peru’s coastal valleys," Water International, Taylor & Francis Journals, vol. 44(2), pages 206-223, February.
    6. Bassel T. Daher & Rabi H. Mohtar, 2015. "Water-energy-food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 748-771, September.
    7. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    8. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    9. Kaddoura, Saeed & El Khatib, Sameh, 2017. "Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making," Environmental Science & Policy, Elsevier, vol. 77(C), pages 114-121.
    10. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    11. Hanif, Imran, 2017. "Economics-energy-environment nexus in Latin America and the Caribbean," Energy, Elsevier, vol. 141(C), pages 170-178.
    12. G. Donoso & E. Blanco & G. Franco & J. Lira, 2016. "Water footprints and irrigated agricultural sustainability: the case of Chile," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(5), pages 738-748, September.
    13. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    14. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    2. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    3. Lazaro, Lira Luz Benites & Giatti, Leandro Luiz & Bermann, Celio & Giarolla, Angelica & Ometto, Jean, 2021. "Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    5. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    6. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    8. Sang-Hyun Lee & Makoto Taniguchi & Rabi H. Mohtar & Jin-Yong Choi & Seung-Hwan Yoo, 2018. "An Analysis of the Water-Energy-Food-Land Requirements and CO 2 Emissions for Food Security of Rice in Japan," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    9. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    10. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    11. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    12. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    13. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    14. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    15. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    16. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    17. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    18. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    19. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    20. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.