IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i8p2227-2231.html
   My bibliography  Save this article

Estimation of animal and olive solid wastes in Jordan and their potential as a supplementary energy source: An overview

Author

Listed:
  • Abu-Ashour, Jamal
  • Qdais, Hani Abu
  • Al-Widyan, Mohammad

Abstract

Biomass is a potential source of energy that can reduce our dependency on oil as the main source of energy. In addition to municipal solid waste, animal and olive wastes are the main sources of organic waste in Jordan. In 2005, there were more than 2.4 million heads of sheep, about 72 thousand cows, and 40 million hens being raised in farms distributed in all governorates of Jordan. These animals produce 5.3 million tons (as exerted) of solid waste per year. If these quantities can be effectively collected they may constitute a valuable source of energy. This paper is aiming to estimate the amounts of animal and solid wastes generated in Jordan and their energy potential. The total amount of BOD from animal waste is estimated at 200,000 tons per year. Significant quantities of organic waste can also be collected from olive mills distributed in the country. This waste known locally as "Jift" is currently being collected and used for heating during the winter. The amount of olive waste produced in 2005 was about 27,000 tons. The potential for energy recovery from these wastes was investigated. Assuming an overall waste collection efficiency of 70%, the total heating value of these wastes was found to be 6600 million MJ. This quantity is equivalent to 157 thousand tons of oil equivalent (toe). This quantity represents 84% of Jordan's local crude oil and natural gas production. However, it only represents 2% of the total primary energy consumption of 7187 thousand toe. In addition, the scattering of farms and olive mills in the country will make the collection of their waste costly. Therefore, any potential project for energy recovery from animal and olive wastes in a centralized plant may have low economic merit; however, its environmental benefits are tangible. Decentralized collection and processing of these wastes may be a better option.

Suggested Citation

  • Abu-Ashour, Jamal & Qdais, Hani Abu & Al-Widyan, Mohammad, 2010. "Estimation of animal and olive solid wastes in Jordan and their potential as a supplementary energy source: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2227-2231, October.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2227-2231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00056-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaygusuz, K. & Türker, M.F., 2002. "Biomass energy potential in Turkey," Renewable Energy, Elsevier, vol. 26(4), pages 661-678.
    2. Tricase, C. & Lombardi, M., 2009. "State of the art and prospects of Italian biogas production from animal sewage: Technical-economic considerations," Renewable Energy, Elsevier, vol. 34(3), pages 477-485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al Afif, Rafat & Ayed, Yasmine & Maaitah, Omer Nawaf, 2023. "Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan," Renewable Energy, Elsevier, vol. 204(C), pages 229-249.
    2. Ala’a K. Al-Bawwat & Francisco Jurado & Mohamed R. Gomaa & Antonio Cano, 2023. "Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    3. Kinab, Elias & Khoury, Georges, 2015. "Management of olive solid waste in Lebanon: From mill to stove," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 209-216.
    4. Hani A. Abu-Qdais & Anna I. Kurbatova, 2022. "Editorial: Sustainable Municipal Solid Waste Management: A Local Issue with Global Impacts," Sustainability, MDPI, vol. 14(18), pages 1-3, September.
    5. Anna Kurbatova & Hani Ahmed Abu-Qdais, 2020. "Using Multi-Criteria Decision Analysis to Select Waste to Energy Technology for a Mega City: The Case of Moscow," Sustainability, MDPI, vol. 12(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    2. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    3. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    4. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    5. Mariarosaria Lombardi & Marco Costantino, 2021. "A Hierarchical Pyramid for Food Waste Based on a Social Innovation Perspective," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    6. Francis Auguste Fleury Junior Dima & Zifu Li & Heinz-Peter Mang & Lixin Zhu, 2022. "Feasibility Analysis of Biogas Production by Using GIS and Multicriteria Decision Aid Methods in the Central African Republic," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    7. Çelikten, İsmet & Mutlu, Emre & Solmaz, Hamit, 2012. "Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends," Renewable Energy, Elsevier, vol. 48(C), pages 122-126.
    8. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    9. Bilgen, Selçuk & Keles, Sedat & Kaygusuz, Abdullah & SarI, Ahmet & Kaygusuz, Kamil, 2008. "Global warming and renewable energy sources for sustainable development: A case study in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 372-396, February.
    10. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    11. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    12. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    13. Zubaryeva, Alyona & Zaccarelli, Nicola & Del Giudice, Cecilia & Zurlini, Giovanni, 2012. "Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion – Mediterranean case study," Renewable Energy, Elsevier, vol. 39(1), pages 261-270.
    14. Gokcol, Cihan & Dursun, Bahtiyar & Alboyaci, Bora & Sunan, Erkan, 2009. "Importance of biomass energy as alternative to other sources in Turkey," Energy Policy, Elsevier, vol. 37(2), pages 424-431, February.
    15. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    16. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    17. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    18. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    19. Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).
    20. P. Elaiyaraju & N. Partha, 2016. "Studies on biogas production by anaerobic process using agroindustrial wastes," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(2), pages 73-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2227-2231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.