IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v115y2019ics1364032119305714.html
   My bibliography  Save this article

Role of immersive visualization tools in renewable energy system development

Author

Listed:
  • Azraff Bin Rozmi, Mohd Daniel
  • Thirunavukkarasu, Gokul Sidarth
  • Jamei, Elmira
  • Seyedmahmoudian, Mehdi
  • Mekhilef, Saad
  • Stojcevski, Alex
  • Horan, Ben

Abstract

Hybrid renewable energy systems (RESs) are being widely utilized as an alternate source of energy for mitigating the rapidly increasing energy demand. Explicit representation of the results obtained from the impact analysis made on a newly proposed or an existing hybrid RES is complex, and it requires powerful visualization tools. Over the years, various visualization techniques were developed towards addressing this problem. Therefore, the use of visualization techniques are continuously growing and have been the focus of many researchers across the world. This review article presents a comprehensive analysis of the advancements in the use of different immersive visualization (IV) tools in state-of-the-art RES development. A total of 41 software packages and a collection of recently published research articles in the field of RES development incorporated with advanced IV tools was identified and critically reviewed based on its use-case, accessibility, complexity, robustness, immersivity, and adaptability. Finally, a list of fit-for-purpose software packages that could be used at different stages of the RES development is recommended. A summary of the current advancements in the use of the IV tools in RES development is presented to highlight the broader potential of multidisciplinary applications of the advanced IV tools in RES development.

Suggested Citation

  • Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305714
    DOI: 10.1016/j.rser.2019.109363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    3. David P. Chassin & Jason C. Fuller & Ned Djilali, 2014. "GridLAB-D: An Agent-Based Simulation Framework for Smart Grids," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-12, June.
    4. Kalogirou, Soteris A., 2001. "Use of TRNSYS for modelling and simulation of a hybrid pv–thermal solar system for Cyprus," Renewable Energy, Elsevier, vol. 23(2), pages 247-260.
    5. Eltham, Douglas C. & Harrison, Gareth P. & Allen, Simon J., 2008. "Change in public attitudes towards a Cornish wind farm: Implications for planning," Energy Policy, Elsevier, vol. 36(1), pages 23-33, January.
    6. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    7. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    8. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    9. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    10. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    11. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    12. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    13. Kaldellis, J. K., 2005. "Social attitude towards wind energy applications in Greece," Energy Policy, Elsevier, vol. 33(5), pages 595-602, March.
    14. Celik, Berk & Karatepe, Engin & Gokmen, Nuri & Silvestre, Santiago, 2013. "A virtual reality study of surrounding obstacles on BIPV systems for estimation of long-term performance of partially shaded PV arrays," Renewable Energy, Elsevier, vol. 60(C), pages 402-414.
    15. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    16. Celik, Berk & Karatepe, Engin & Silvestre, Santiago & Gokmen, Nuri & Chouder, Aissa, 2015. "Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications," Renewable Energy, Elsevier, vol. 75(C), pages 534-540.
    17. Mirzahosseini, Alireza Hajiseyed & Taheri, Taraneh, 2012. "Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2806-2811.
    18. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    19. Aldeman, M.R. & Jo, J.H. & Loomis, D.G., 2015. "The technical potential for wind energy in Illinois," Energy, Elsevier, vol. 90(P1), pages 1082-1090.
    20. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    21. Bishop, Ian D. & Stock, Christian, 2010. "Using collaborative virtual environments to plan wind energy installations," Renewable Energy, Elsevier, vol. 35(10), pages 2348-2355.
    22. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    23. Lee, Kyoung-Ho & Lee, Dong-Won & Baek, Nam-Choon & Kwon, Hyeok-Min & Lee, Chang-Jun, 2012. "Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen," Energy, Elsevier, vol. 47(1), pages 83-96.
    24. Eckart Lange & Sigrid Hehl-Lange, 2005. "Combining a participatory planning approach with a virtual landscape model for the siting of wind turbines," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(6), pages 833-852.
    25. Jallouli, J. & Moreau, G., 2009. "An immersive path-based study of wind turbines' landscape: A French case in Plouguin," Renewable Energy, Elsevier, vol. 34(3), pages 597-607.
    26. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    27. Benbelkacem, Samir & Belhocine, Mahmoud & Bellarbi, Abdelkader & Zenati-Henda, Nadia & Tadjine, Mohamed, 2013. "Augmented reality for photovoltaic pumping systems maintenance tasks," Renewable Energy, Elsevier, vol. 55(C), pages 428-437.
    28. Ozerdem, B. & Turkeli, H.M., 2005. "Wind energy potential estimation and micrositting on Izmir Institute of Technology Campus, Turkey," Renewable Energy, Elsevier, vol. 30(10), pages 1623-1633.
    29. Ciriminna, Rosaria & Meneguzzo, Francesco & Pecoraino, Mario & Pagliaro, Mario, 2016. "Rethinking solar energy education on the dawn of the solar economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 13-18.
    30. Fragaki, Aikaterini & Andersen, Anders N., 2011. "Conditions for aggregation of CHP plants in the UK electricity market and exploration of plant size," Applied Energy, Elsevier, vol. 88(11), pages 3930-3940.
    31. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    32. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    33. Carolin Mabel, M. & Fernandez, E., 2008. "Growth and future trends of wind energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1745-1757, August.
    34. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    35. Tozzi, Peter & Jo, Jin Ho, 2017. "A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 390-398.
    36. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Aqeel Farooq & Mehdi Seyedmahmoudian & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2021. "Overview and Exploitation of Haptic Tele-Weight Device in Virtual Shopping Stores," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    3. Ghouchani, Mahya & Taji, Mohammad & Cheheltani, Atefeh Sadat & Chehr, Mohammad Seifi, 2021. "Developing a perspective on the use of renewable energy in Iran," Technological Forecasting and Social Change, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    4. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    5. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    6. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    7. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    8. Tozzi, Peter & Jo, Jin Ho, 2017. "A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 390-398.
    9. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    10. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    11. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    12. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    13. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    14. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    15. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    16. Kosmas A. Kavadias & Panagiotis Triantafyllou, 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools," Energies, MDPI, vol. 14(24), pages 1-28, December.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    19. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    20. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.