IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp1116-1125.html
   My bibliography  Save this article

Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving

Author

Listed:
  • Allik, Alo
  • Märss, Maido
  • Uiga, Jaanus
  • Annuk, Andres

Abstract

This paper addresses the problems of output power distribution and variability of small wind turbines. The aim of the study was to increase the share of locally consumed renewable energy and decrease power fluctuation in residential houses that meet their energy demand using wind energy. A system with shiftable water heating and decreased inverter power, which avoids unnecessary conversion steps for shifting of power peaks is proposed. Autocorrelation functions were used to analyse the energy consumption and production patterns for optimization of the inverter and hot water storage tank size for load shifting. The optimal sizing of these components for applying the method was found for different wind conditions. The results of simulations with high temporal resolution data and experiments showed that the proposed system is able to shave stochastic power peaks and shift electrical loads. The analysis of net energy flow revealed that the renewable energy cover factors can be enhanced by 14.4–36.0% and the wind turbine's nominal inverter power can be decreased down to 29.2–52.3% without increasing the system's energy losses or changing the hot water consumption pattern.

Suggested Citation

  • Allik, Alo & Märss, Maido & Uiga, Jaanus & Annuk, Andres, 2016. "Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving," Renewable Energy, Elsevier, vol. 99(C), pages 1116-1125.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1116-1125
    DOI: 10.1016/j.renene.2016.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fitzgerald, Niall & Foley, Aoife M. & McKeogh, Eamon, 2012. "Integrating wind power using intelligent electric water heating," Energy, Elsevier, vol. 48(1), pages 135-143.
    2. Swider, Derk J. & Beurskens, Luuk & Davidson, Sarah & Twidell, John & Pyrko, Jurek & Prüggler, Wolfgang & Auer, Hans & Vertin, Katarina & Skema, Romualdas, 2008. "Conditions and costs for renewables electricity grid connection: Examples in Europe," Renewable Energy, Elsevier, vol. 33(8), pages 1832-1842.
    3. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    4. Lubitz, William David, 2014. "Impact of ambient turbulence on performance of a small wind turbine," Renewable Energy, Elsevier, vol. 61(C), pages 69-73.
    5. Nathan P. Siegel, 2012. "Thermal energy storage for solar power production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(2), pages 119-131, September.
    6. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    7. Elkinton, Melissa R. & McGowan, Jon G. & Manwell, James F., 2009. "Wind power systems for zero net energy housing in the United States," Renewable Energy, Elsevier, vol. 34(5), pages 1270-1278.
    8. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    9. Bagge, Hans & Johansson, Dennis, 2011. "Measurements of household electricity and domestic hot water use in dwellings and the effect of different monitoring time resolution," Energy, Elsevier, vol. 36(5), pages 2943-2951.
    10. Camps, Xavier & Velasco, Guillermo & de la Hoz, Jordi & Martín, Helena, 2015. "Contribution to the PV-to-inverter sizing ratio determination using a custom flexible experimental setup," Applied Energy, Elsevier, vol. 149(C), pages 35-45.
    11. Iqbal, M.T., 2004. "A feasibility study of a zero energy home in Newfoundland," Renewable Energy, Elsevier, vol. 29(2), pages 277-289.
    12. Vanhoudt, D. & Geysen, D. & Claessens, B. & Leemans, F. & Jespers, L. & Van Bael, J., 2014. "An actively controlled residential heat pump: Potential on peak shaving and maximization of self-consumption of renewable energy," Renewable Energy, Elsevier, vol. 63(C), pages 531-543.
    13. James, P.A.B. & Sissons, M.F. & Bradford, J. & Myers, L.E. & Bahaj, A.S. & Anwar, A. & Green, S., 2010. "Implications of the UK field trial of building mounted horizontal axis micro-wind turbines," Energy Policy, Elsevier, vol. 38(10), pages 6130-6144, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Shengli & Liu, Huan & Liu, Zhanwei & Liu, Benxi & Li, Gang & Li, Shushan, 2021. "Medium-term peak shaving operation of cascade hydropower plants considering water delay time," Renewable Energy, Elsevier, vol. 179(C), pages 406-417.
    2. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    2. Narayan, Nishant & Chamseddine, Ali & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2019. "Exploring the boundaries of Solar Home Systems (SHS) for off-grid electrification: Optimal SHS sizing for the multi-tier framework for household electricity access," Applied Energy, Elsevier, vol. 240(C), pages 907-917.
    3. Vladan Durković & Željko Đurišić, 2017. "Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro," Energies, MDPI, vol. 10(10), pages 1-23, September.
    4. Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    5. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    6. Martin Almenta, M. & Morrow, D.J. & Best, R.J. & Fox, B. & Foley, A.M., 2016. "Domestic fridge-freezer load aggregation to support ancillary services," Renewable Energy, Elsevier, vol. 87(P2), pages 954-964.
    7. Ghaith, Ahmad & Epplin, Francis & Frazier, R. Scott, 2016. "Cost of Oklahoma Grid-tied Solar Panel and Wind Turbine Systems for a Representative Household," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229820, Southern Agricultural Economics Association.
    8. Tekai Eddine Khalil Zidane & Mohd Rafi Adzman & Mohammad Faridun Naim Tajuddin & Samila Mat Zali & Ali Durusu & Saad Mekhilef, 2020. "Optimal Design of Photovoltaic Power Plant Using Hybrid Optimisation: A Case of South Algeria," Energies, MDPI, vol. 13(11), pages 1-28, June.
    9. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of household wind turbine grid-tied systems for five wind resource levels and alternative grid pricing rates," Renewable Energy, Elsevier, vol. 109(C), pages 155-167.
    10. Francesco Castellani & Davide Astolfi & Matteo Becchetti & Francesco Berno & Filippo Cianetti & Alessandro Cetrini, 2018. "Experimental and Numerical Vibrational Analysis of a Horizontal-Axis Micro-Wind Turbine," Energies, MDPI, vol. 11(2), pages 1-16, February.
    11. Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
    12. Kosai, Shoki & Yamasue, Eiji, 2018. "Cost-security analysis dedicated for the off-grid electricity system," Renewable Energy, Elsevier, vol. 115(C), pages 871-879.
    13. Andres Annuk & Wahiba Yaïci & Matti Lehtonen & Risto Ilves & Toivo Kabanen & Peep Miidla, 2021. "Simulation of Energy Exchange between Single Prosumer Residential Building and Utility Grid," Energies, MDPI, vol. 14(6), pages 1-13, March.
    14. Good, Jeremy & Johnson, Jeremiah X., 2016. "Impact of inverter loading ratio on solar photovoltaic system performance," Applied Energy, Elsevier, vol. 177(C), pages 475-486.
    15. Fahd Diab & Hai Lan & Lijun Zhang & Salwa Ali, 2015. "An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part Two: A Net Zero Energy Tourist Village," Energies, MDPI, vol. 8(7), pages 1-17, July.
    16. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Maria Dousi & S. Hionidis & S. Kaliakos & Elena Mastrapostoli & Michael Nomikos & Mattheos Santamouris & Afroditi Synnefa & Giuseppe Peter V, 2017. "Design and performance analysis of a zero-energy settlement in Greece," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 141-161.
    17. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    18. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    19. Wang, H.X. & Muñoz-García, M.A. & Moreda, G.P. & Alonso-García, M.C., 2018. "Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations," Renewable Energy, Elsevier, vol. 118(C), pages 709-717.
    20. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1116-1125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.