IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp203-215.html
   My bibliography  Save this article

Bioconversion of sugarcane crop residue for value added products – An overview

Author

Listed:
  • Sindhu, Raveendran
  • Gnansounou, Edgard
  • Binod, Parameswaran
  • Pandey, Ashok

Abstract

Sugarcane is a major crop cultivated globally and the residue left over after the crop harvest and extraction of juice is a good biomass source that can be used for the production of several useful chemicals. The sugarcane bagasse is an excellent substrate for the production of various biochemicals and enzymes through fermentation. Now major interest is focused on the utilization of these residue for biofuel production. The sugarcane crop residue is rich in cellulose and hemicellulose, hence it can be used for the production of bioethanol and other liquid transportation fuels. The present review gives a detailed account of the availability of sugarcane residue and various commercially important products that can be produced from this residue. It also provides recent developments in R&D on the bioconversion of sugarcane crop residue for value added products.

Suggested Citation

  • Sindhu, Raveendran & Gnansounou, Edgard & Binod, Parameswaran & Pandey, Ashok, 2016. "Bioconversion of sugarcane crop residue for value added products – An overview," Renewable Energy, Elsevier, vol. 98(C), pages 203-215.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:203-215
    DOI: 10.1016/j.renene.2016.02.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binod, Parameswaran & Satyanagalakshmi, Karri & Sindhu, Raveendran & Janu, Kanakambaran Usha & Sukumaran, Rajeev K. & Pandey, Ashok, 2012. "Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse," Renewable Energy, Elsevier, vol. 37(1), pages 109-116.
    2. N.A. Amenaghawon & S.O. Areguamen & N.T. Agbroko & S.E. Ogbeide & C.O. Okieimen, 2013. "Modelling and Statistical Optimisation of Citric Acid Production from Solid State Fermentation of Sugar Cane Bagasse using Aspergillus Niger," International Journal of Sciences, Office ijSciences, vol. 2(03), pages 56-62, March.
    3. Sindhu, Raveendran & Kuttiraja, Mathiyazhakan & Binod, Parameswaran & Sukumaran, Rajeev Kumar & Pandey, Ashok, 2014. "Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 362-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    3. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    4. Zhu, Junjun & Jiao, Ningxin & Cheng, Jinlan & Zhang, Han & Xu, Guangliu & Xu, Yong & Zhu, J.Y., 2023. "Integrated process for the co-production of bioethanol, furfural, and lignin nanoparticles from birch wood via acid hydrotropic fractionation," Renewable Energy, Elsevier, vol. 204(C), pages 176-184.
    5. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    6. Albarelli, Juliana Q. & Santos, Diego T. & Ensinas, Adriano V. & Marechal, François & Cocero, María J. & Meireles, M. Angela A., 2018. "Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: Thermal and economic analysis," Renewable Energy, Elsevier, vol. 129(PB), pages 776-785.
    7. Eva Catalán & Antoni Sánchez, 2020. "Solid-State Fermentation (SSF) versus Submerged Fermentation (SmF) for the Recovery of Cellulases from Coffee Husks: A Life Cycle Assessment (LCA) Based Comparison," Energies, MDPI, vol. 13(11), pages 1-20, May.
    8. Basaglia, Marina & Favaro, Lorenzo & Torri, Cristian & Casella, Sergio, 2021. "Is pyrolysis bio-oil prone to microbial conversion into added-value products?," Renewable Energy, Elsevier, vol. 163(C), pages 783-791.
    9. Yifang Zhou & Mingzhang Pan & Wei Guan & Changcheng Fu & Tiecheng Su, 2023. "Predicting Sugarcane Yield via the Use of an Improved Least Squares Support Vector Machine and Water Cycle Optimization Model," Agriculture, MDPI, vol. 13(11), pages 1-23, November.
    10. Akhtar, Junaid & Idris, Ani, 2017. "Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 114(PB), pages 917-923.
    11. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Leonardo Rivera-Cadavid & Pablo Cesar Manyoma-Velásquez & Diego F. Manotas-Duque, 2019. "Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    13. Aguilar-Rivera, Noé, 2019. "A framework for the analysis of socioeconomic and geographic sugarcane agro industry sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 149-160.
    14. Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    15. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    16. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2021. "Evaluation of n-butene synthesis from dimethyl ether in the production of 1,3-butadiene from lignin: A techno-economic analysis," Renewable Energy, Elsevier, vol. 163(C), pages 964-973.
    17. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    18. Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Long Wee & Idris, Ani, 2016. "Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk," Renewable Energy, Elsevier, vol. 99(C), pages 738-746.
    2. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    3. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    4. Pandey, Ajay Kumar & Edgard, Gnansounou & Negi, Sangeeta, 2016. "Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 51-56.
    5. Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Smichi, Neila & Messaoudi, Yosra & Ksouri, Riadh & Abdelly, Chedly & Gargouri, Mohamed, 2014. "Pretreatment and enzymatic saccharification of new phytoresource for bioethanol production from halophyte species," Renewable Energy, Elsevier, vol. 63(C), pages 544-549.
    7. Baramee, Sirilak & Siriatcharanon, Ake-kavitch & Ketbot, Prattana & Teeravivattanakit, Thitiporn & Waeonukul, Rattiya & Pason, Patthra & Tachaapaikoon, Chakrit & Ratanakhanokchai, Khanok & Phitsuwan, , 2020. "Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility," Renewable Energy, Elsevier, vol. 160(C), pages 555-563.
    8. Pereira, Sandra C. & Maehara, Larissa & Machado, Cristina M.M. & Farinas, Cristiane S., 2016. "Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques," Renewable Energy, Elsevier, vol. 87(P1), pages 607-617.
    9. Zhang, Qi & Zhang, Pengfei & Pei, Z.J. & Wang, Donghai, 2013. "Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature," Renewable Energy, Elsevier, vol. 60(C), pages 127-136.
    10. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    11. Martin J. Taylor & Hassan A. Alabdrabalameer & Vasiliki Skoulou, 2019. "Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels," Sustainability, MDPI, vol. 11(13), pages 1-27, June.
    12. Anna Nowicka & Marcin Zieliński & Marcin Dębowski & Magda Dudek, 2021. "Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment," Energies, MDPI, vol. 14(23), pages 1-16, December.
    13. Chai, Siu Yeng & Abbasiliasi, Sahar & Lee, Chee Keong & Ibrahim, Tengku Azmi Tengku & Kadkhodaei, Saeid & Mohamed, Mohd Shamzi & Hashim, Rokiah & Tan, Joo Shun, 2018. "Extraction of fresh banana waste juice as non-cellulosic and non-food renewable feedstock for direct lipase production," Renewable Energy, Elsevier, vol. 126(C), pages 431-436.
    14. Akhtar, Junaid & Idris, Ani, 2017. "Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 114(PB), pages 917-923.
    15. Sindhu, Raveendran & Kuttiraja, Mathiyazhakan & Binod, Parameswaran & Sukumaran, Rajeev Kumar & Pandey, Ashok, 2014. "Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 362-368.
    16. Tae Hoon Kim & Seung Hyeon Park & Tin Diep Trung Le & Tae Hyun Kim & Kyeong Keun Oh, 2022. "Effects of Colloid Milling and Hot-Water Pretreatment on Physical Properties and Enzymatic Digestibility of Oak Wood," Energies, MDPI, vol. 15(6), pages 1-15, March.
    17. Nair, Anu Sadasivan & Al-Bahry, Saif & Gathergood, Nicholas & Tripathi, Bhumi Nath & Sivakumar, Nallusamy, 2020. "Production of microbial lipids from optimized waste office paper hydrolysate, lipid profiling and prediction of biodiesel properties," Renewable Energy, Elsevier, vol. 148(C), pages 124-134.
    18. Mesa, Leyanis & Martínez, Yenisleidy & Barrio, Edenny & González, Erenio, 2017. "Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations," Applied Energy, Elsevier, vol. 198(C), pages 299-311.
    19. Hemansi, & Gupta, Rishi & Aswal, Vinod K. & Saini, Jitendra Kumar, 2020. "Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: Insight from small angle neutron scattering (SANS)," Renewable Energy, Elsevier, vol. 147(P1), pages 2091-2101.
    20. Mupondwa, Edmund & Li, Xue & Tabil, Lope & Sokhansanj, Shahab & Adapa, Phani, 2017. "Status of Canada's lignocellulosic ethanol: Part I: Pretreatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 178-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:203-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.