IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v88y2016icp325-332.html
   My bibliography  Save this article

The effect of measurement time resolution on the peak time power demand reduction potential of domestic solar hot water systems

Author

Listed:
  • Naspolini, Helena F.
  • Rüther, Ricardo

Abstract

The electrical resistance showerhead is the water heating technology used in over 70% of the Brazilian dwellings. These high power (5–8 kW are typical) instant heating devices contribute significantly to the demand peak in the early evening, and are a major burden to distribution utilities in Brazil. The objective of this paper is to define consumer showering patterns, and analyze the influence of the power demand measurement time resolution on the potential of peak time power demand reduction provided by Domestic Solar Hot Water (DSHW) systems. Results show that the measurement of electrical power demand in a 15-min interval is not adequate to evaluate and verify the benefits provided by the use of DSHW systems, because it heavily underestimates the active power demand reduction at peak hours. This work suggests that a 1-min time resolution can be considered appropriate to assess the potential impacts caused by the use of DSHW systems on the peak hours demand reduction.

Suggested Citation

  • Naspolini, Helena F. & Rüther, Ricardo, 2016. "The effect of measurement time resolution on the peak time power demand reduction potential of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 88(C), pages 325-332.
  • Handle: RePEc:eee:renene:v:88:y:2016:i:c:p:325-332
    DOI: 10.1016/j.renene.2015.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    2. Meyer, J.P & Tshimankinda, M, 1998. "Domestic hot-water consumption in South African apartments," Energy, Elsevier, vol. 23(1), pages 61-66.
    3. Almeida, Mauro Araujo & Schaeffer, Roberto & La Rovere, Emilio Lèbre, 2001. "The potential for electricity conservation and peak load reduction in the residential sector of Brazil," Energy, Elsevier, vol. 26(4), pages 413-429.
    4. Vine, Edward & Diamond, Rick & Szydlowski, Rich, 1987. "Domestic hot water consumption in four low-income apartment buildings," Energy, Elsevier, vol. 12(6), pages 459-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
    2. Moldovan, Camelia Liliana & Păltănea, Radu & Visa, Ion, 2020. "Improvement of clear sky models for direct solar irradiance considering turbidity factor variable during the day," Renewable Energy, Elsevier, vol. 161(C), pages 559-569.
    3. Fernanda Spada Villar & Pedro Henrique Juliano Nardelli & Arun Narayanan & Renan Cipriano Moioli & Hader Azzini & Luiz Carlos Pereira da Silva, 2021. "Noninvasive Detection of Appliance Utilization Patterns in Residential Electricity Demand," Energies, MDPI, vol. 14(6), pages 1-23, March.
    4. Giglio, T. & Santos, V. & Lamberts, R., 2019. "Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context," Renewable Energy, Elsevier, vol. 133(C), pages 1404-1413.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    2. Katarzyna Ratajczak & Katarzyna Michalak & Michał Narojczyk & Łukasz Amanowicz, 2021. "Real Domestic Hot Water Consumption in Residential Buildings and Its Impact on Buildings’ Energy Performance—Case Study in Poland," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    4. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
    7. Camargo Nogueira, Carlos Eduardo & Vidotto, Magno Luiz & Toniazzo, Fernando & Debastiani, Gilson, 2016. "Software for designing solar water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 361-375.
    8. Sowmy, Daniel Setrak & Schiavon Ara, Paulo José & Prado, Racine T.A., 2017. "Uncertainties associated with solar collector efficiency test using an artificial solar simulator," Renewable Energy, Elsevier, vol. 108(C), pages 644-651.
    9. Cruz, Talita & Schaeffer, Roberto & Lucena, André F.P. & Melo, Sérgio & Dutra, Ricardo, 2020. "Solar water heating technical-economic potential in the household sector in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1618-1639.
    10. Ghisi, Enedir & Gosch, Samuel & Lamberts, Roberto, 2007. "Electricity end-uses in the residential sector of Brazil," Energy Policy, Elsevier, vol. 35(8), pages 4107-4120, August.
    11. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    12. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    13. Hultman, Nathan E. & Pulver, Simone & Guimarães, Leticia & Deshmukh, Ranjit & Kane, Jennifer, 2012. "Carbon market risks and rewards: Firm perceptions of CDM investment decisions in Brazil and India," Energy Policy, Elsevier, vol. 40(C), pages 90-102.
    14. repec:ilo:ilowps:457681 is not listed on IDEAS
    15. Bojić, M. & Kalogirou, S. & Petronijević, K., 2002. "Simulation of a solar domestic water heating system using a time marching model," Renewable Energy, Elsevier, vol. 27(3), pages 441-452.
    16. Kievani, Ramin. & Tah, Joseph H.M. & Kurul, Esra. & Habanda, Henry., 2010. "Green jobs creation through sustainable refurbishment in the developing countries," ILO Working Papers 994576813402676, International Labour Organization.
    17. Kaldellis, J.K. & El-Samani, K. & Koronakis, P., 2005. "Feasibility analysis of domestic solar water heating systems in Greece," Renewable Energy, Elsevier, vol. 30(5), pages 659-682.
    18. Kaldellis, J.K. & Kavadias, K.A. & Spyropoulos, G., 2005. "Investigating the real situation of Greek solar water heating market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 499-520, October.
    19. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y. & Ahmed, S., 2007. "Energy and associated greenhouse gas emissions from household appliances in Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1648-1657, March.
    20. Khalil, Helioui & Cohen, Claude & Salem Szklo, Alexandre, 2006. "How to use the clean development mechanism in the residential sector? The case of Brazilian refrigerators," Energy Policy, Elsevier, vol. 34(15), pages 2150-2160, October.
    21. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:88:y:2016:i:c:p:325-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.