IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v27y2002i3p441-452.html
   My bibliography  Save this article

Simulation of a solar domestic water heating system using a time marching model

Author

Listed:
  • Bojić, M.
  • Kalogirou, S.
  • Petronijević, K.

Abstract

This paper presents the modelling and simulation of a solar water heating system using a time marching model. The results of simulations performed on an annual basis for a solar system, constructed and operated in Yugoslavia, which provides domestic hot water for a four-person family are presented. The solar water heater consists of a flat-plate solar collector, a water-storage tank, an electric heater, and a water-mixing device. The mathematical model is used to evaluate the annual variation of the solar fraction with respect to the volume of the storage tank, demand hot water temperature required, difference of this temperature and preset storage tank water temperature, and consumption profile of the domestic hot water demand. The results of this investigation may be used to design a solar collector system, and to operate already designed systems, effectively. The results for a number of designs with different storage tank volumes indicate that the systems with greater volume yield higher solar fraction values. The results additionally indicate that the solar fraction of the system increases with lower hot water demand temperature and higher differences between the mean storage water and the demand temperatures. However, when a larger storage tank volume is used, the solar fraction is less sensitive to a variation of these operation parameters.

Suggested Citation

  • Bojić, M. & Kalogirou, S. & Petronijević, K., 2002. "Simulation of a solar domestic water heating system using a time marching model," Renewable Energy, Elsevier, vol. 27(3), pages 441-452.
  • Handle: RePEc:eee:renene:v:27:y:2002:i:3:p:441-452
    DOI: 10.1016/S0960-1481(01)00098-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148101000982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(01)00098-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, J.P & Tshimankinda, M, 1998. "Domestic hot-water consumption in South African apartments," Energy, Elsevier, vol. 23(1), pages 61-66.
    2. Shariah, A.M. & Löf, G.O.G., 1996. "The optimization of tank-volume-to-collector-area ratio for a thermosyphon solar water heater," Renewable Energy, Elsevier, vol. 7(3), pages 289-300.
    3. Matrawy, K.K. & Farkas, I., 1996. "An estimation for the solar storage size based on the annual solar fraction," Renewable Energy, Elsevier, vol. 9(1), pages 613-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: Proportional flow rate control," Energy, Elsevier, vol. 138(C), pages 668-681.
    2. Araújo, António & Silva, Rui, 2020. "Energy modeling of solar water heating systems with on-off control and thermally stratified storage using a fast computation algorithm," Renewable Energy, Elsevier, vol. 150(C), pages 891-906.
    3. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: On-off flow rate control," Energy, Elsevier, vol. 119(C), pages 637-651.
    4. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    5. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    6. Nafey, Abmed Safwat, 2005. "Simulation of solar heating systems--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 576-591, December.
    7. Ho, C.D. & Chen, T.C., 2008. "Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached," Renewable Energy, Elsevier, vol. 33(4), pages 655-664.
    8. Carboni, Christian & Montanari, Roberto, 2008. "Solar thermal systems: Advantages in domestic integration," Renewable Energy, Elsevier, vol. 33(6), pages 1364-1373.
    9. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    10. Benli, Hüseyin, 2016. "Potential application of solar water heaters for hot water production in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 99-109.
    11. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Mei Liu & Kung-Ming Chung & Keh-Chin Chang & Tsong-Sheng Lee, 2012. "Performance of Thermosyphon Solar Water Heaters in Series," Energies, MDPI, vol. 5(9), pages 1-13, August.
    2. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    3. Shariah, Adnan & Dajeh, Deifallah & Malhi, Nabil, 1999. "Technical note Best connection scheme of collector modules of thermosyphon solar water heater operated at high temperatures," Renewable Energy, Elsevier, vol. 17(4), pages 573-586.
    4. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    5. Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2021. "Long-term performance of a solar water heating system with a novel variable-volume tank," Renewable Energy, Elsevier, vol. 164(C), pages 230-241.
    6. Kaldellis, J.K. & El-Samani, K. & Koronakis, P., 2005. "Feasibility analysis of domestic solar water heating systems in Greece," Renewable Energy, Elsevier, vol. 30(5), pages 659-682.
    7. Myeong Jin Ko, 2015. "Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II," Energies, MDPI, vol. 8(11), pages 1-25, November.
    8. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    9. Kaldellis, J.K. & Kavadias, K.A. & Spyropoulos, G., 2005. "Investigating the real situation of Greek solar water heating market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 499-520, October.
    10. Katarzyna Ratajczak & Katarzyna Michalak & Michał Narojczyk & Łukasz Amanowicz, 2021. "Real Domestic Hot Water Consumption in Residential Buildings and Its Impact on Buildings’ Energy Performance—Case Study in Poland," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Venkatesh, G. & Brattebø, Helge, 2011. "Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway)," Energy, Elsevier, vol. 36(2), pages 792-800.
    13. Shariah, Adnan & Shalabi, Bassam, 1997. "Optimal design for a thermosyphon solar water heater," Renewable Energy, Elsevier, vol. 11(3), pages 351-361.
    14. Chuawittayawuth, K. & Kumar, S., 2002. "Experimental investigation of temperature and flow distribution in a thermosyphon solar water heating system," Renewable Energy, Elsevier, vol. 26(3), pages 431-448.
    15. Wojciech Rzeźnik & Ilona Rzeźnik & Paweł Hara, 2022. "Comparison of Real and Forecasted Domestic Hot Water Consumption and Demand for Heat Power in Multifamily Buildings, in Poland," Energies, MDPI, vol. 15(19), pages 1-17, September.
    16. Naspolini, Helena F. & Rüther, Ricardo, 2016. "The effect of measurement time resolution on the peak time power demand reduction potential of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 88(C), pages 325-332.
    17. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    18. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Nwosu, P.N. & Agbiogwu, D., 2013. "Thermal analysis of a novel fibre-reinforced plastic solar hot water storage tank," Energy, Elsevier, vol. 60(C), pages 109-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:27:y:2002:i:3:p:441-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.