IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip1p253-258.html
   My bibliography  Save this article

Economic impact potential of solar photovoltaics in Illinois

Author

Listed:
  • Loomis, D.G.
  • Jo, J.H.
  • Aldeman, M.R.

Abstract

Illinois ranks nineteenth among all states in total installed solar PV capacity as of the first quarter in 2014 [17]. The authors' prior work [14] assessed the technical potential of large-scale PV system integration in Illinois by examining hourly demand data supplied by the two transmission organizations (MISO and PJM) in the state. Depending on how technical potential is measured, three different PV system capacity options were suggested by 2025 for Illinois; 2292 MW, 2714 MW and 11,265 MW. In the present study, we seek to examine the jobs and total economic impact of the three technical potentials derived in the previous study. Based upon the Jobs and Economic Development Impact (JEDI) modeling analysis, the employment impacts during the construction period vary from 26,754 to 131,779 job years when implementing the PV system capacity options in Illinois. The employment impacts during the operating years vary from 1223 to 6010 job years. In order to achieve these jobs impacts, Illinois must encourage the development of a robust PV supply chain within the state's borders and enact policies similar to other states that have experienced greater growth.

Suggested Citation

  • Loomis, D.G. & Jo, J.H. & Aldeman, M.R., 2016. "Economic impact potential of solar photovoltaics in Illinois," Renewable Energy, Elsevier, vol. 87(P1), pages 253-258.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:253-258
    DOI: 10.1016/j.renene.2015.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Arce, Rafael & Mahía, Ramón & Medina, Eva & Escribano, Gonzalo, 2012. "A simulation of the economic impact of renewable energy development in Morocco," Energy Policy, Elsevier, vol. 46(C), pages 335-345.
    2. Sadati, S.M. Sajed & Qureshi, Fassahat Ullah & Baker, Derek, 2015. "Energetic and economic performance analyses of photovoltaic, parabolic trough collector and wind energy systems for Multan, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 844-855.
    3. Jo, J.H. & Loomis, D.G. & Aldeman, M.R., 2013. "Optimum penetration of utility-scale grid-connected solar photovoltaic systems in Illinois," Renewable Energy, Elsevier, vol. 60(C), pages 20-26.
    4. Edward A. Hudson, 1980. "Economic Effects of Increased Penetration of Solar Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 97-112.
    5. Çetin, Müjgan & Eğrican, Nilüfer, 2011. "Employment impacts of solar energy in Turkey," Energy Policy, Elsevier, vol. 39(11), pages 7184-7190.
    6. Croucher, Matt, 2012. "Which state is Yoda?," Energy Policy, Elsevier, vol. 42(C), pages 613-615.
    7. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    8. Tsantopoulos, Georgios & Arabatzis, Garyfallos & Tampakis, Stilianos, 2014. "Public attitudes towards photovoltaic developments: Case study from Greece," Energy Policy, Elsevier, vol. 71(C), pages 94-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    2. Santibañez-Aguilar, José Ezequiel & Castellanos, Sergio & Flores-Tlacuahuac, Antonio & Shapiro, Benjamin B. & Powell, Douglas M. & Buonassisi, Tonio & Kammen, Daniel M., 2020. "Design of domestic photovoltaics manufacturing systems under global constraints and uncertainty," Renewable Energy, Elsevier, vol. 148(C), pages 1174-1189.
    3. Yu-Ling Hsiao, Cody & Ai, Dan & Wei, Xinyang & Sheng, Ni, 2021. "The contagious effect of China’s energy policy on stock markets: The case of the solar photovoltaic industry," Renewable Energy, Elsevier, vol. 164(C), pages 74-86.
    4. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    5. Becerra-Fernandez, Mauricio & Sarmiento, Alfonso T. & Cardenas, Laura M., 2023. "Sustainability assessment of the solar energy supply chain in Colombia," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    2. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    3. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    4. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    5. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    6. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.
    7. Poonia, Surendra & Jat, N.K. & Santra, Priyabrata & Singh, A.K. & Jain, Dilip & Meena, H.M., 2022. "Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India," Renewable Energy, Elsevier, vol. 184(C), pages 149-163.
    8. Laurent Scaringella & Jean-Jacques Chanaron, 2016. "Grenoble–GIANT Territorial Innovation Models," Grenoble Ecole de Management (Post-Print) hal-01472878, HAL.
    9. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).
    10. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    11. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    12. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Aslan, Alper, 2016. "The causal relationship between biomass energy use and economic growth in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 362-366.
    14. Jinwon Bae & Sandy Dall'erba, 2016. "The economic impact of a new solar power plant in Arizona: Comparing the input-output results generated by JEDI vs. IMPLAN," Regional Science Policy & Practice, Wiley Blackwell, vol. 8(1-2), pages 61-73, March.
    15. Fengchang Jiang & Haiyan Xie & Oliver Ellen, 2018. "Hybrid Energy System with Optimized Storage for Improvement of Sustainability in a Small Town," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    16. Iwona Zdonek & Anna Mularczyk & Marian Turek & Stanisław Tokarski, 2023. "Perception of Prosumer Photovoltaic Technology in Poland: Usability, Ease of Use, Attitudes, and Purchase Intentions," Energies, MDPI, vol. 16(12), pages 1-18, June.
    17. Escribano Francés, Gonzalo & Marín-Quemada, José María & San Martín González, Enrique, 2013. "RES and risk: Renewable energy's contribution to energy security. A portfolio-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 549-559.
    18. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    19. Xiaodan Guo & Dongxiao Niu & Bowen Xiao, 2016. "Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis," Energies, MDPI, vol. 9(5), pages 1-23, May.
    20. Cook, Tyson & Shaver, Lee & Arbaje, Paul, 2018. "Modeling constraints to distributed generation solar photovoltaic capacity installation in the US Midwest," Applied Energy, Elsevier, vol. 210(C), pages 1037-1050.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:253-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.