IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp228-237.html
   My bibliography  Save this article

Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model

Author

Listed:
  • Xu, H.J.
  • Zhao, C.Y.

Abstract

The cascaded thermal storage technique has emerged as an important solution for efficient conversion and utilization of thermal energies. In this paper, an exergy optimization was performed for cascaded latent cold/heat storage using multi-stage heat engine model. The optimization solution for both heat storage and cold storage systems was obtained, which was used for guiding the selection of PCMs with two examples presented. Cascaded thermal storage with increased stage number can not only extend temperature band for multi-grade thermal energy, but also reduce the exergy of the outlet HTF. It was found that heat transfer enhancement (improving NTU) is very necessary for a cascaded thermal storage system. The COP of cold energy may be greater than 1, which is also higher than that of heat for the same temperature difference in a cascaded thermal storage system. The increased environment temperature improves the COP of the cascaded cold storage (from 0.54 to 0.68) but reduces that of the cascaded heat storage (from 0.42 to 0.366). In the practical design of the cascaded thermal storage system, the stage number should be determined by balancing economics and system complexity.

Suggested Citation

  • Xu, H.J. & Zhao, C.Y., 2016. "Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model," Renewable Energy, Elsevier, vol. 86(C), pages 228-237.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:228-237
    DOI: 10.1016/j.renene.2015.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811530207X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    3. Li, Ya-Qi & He, Ya-Ling & Wang, Zhi-Feng & Xu, Chao & Wang, Weiwei, 2012. "Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 39(1), pages 447-454.
    4. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications," Renewable Energy, Elsevier, vol. 68(C), pages 452-458.
    5. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    6. Chiu, Justin N.W. & Martin, Viktoria, 2013. "Multistage latent heat cold thermal energy storage design analysis," Applied Energy, Elsevier, vol. 112(C), pages 1438-1445.
    7. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    8. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    9. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    2. Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).
    3. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    4. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2018. "Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant," Applied Energy, Elsevier, vol. 228(C), pages 240-253.
    5. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    6. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    7. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim, 2017. "A comparative thermo-ecological performance analysis of generalized irreversible solar-driven heat engines," Renewable Energy, Elsevier, vol. 113(C), pages 1242-1249.
    8. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    9. Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
    10. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    11. Lin, Ying & Fan, Yubin & Yu, Meng & Jiang, Long & Zhang, Xuejun, 2022. "Performance investigation on an air source heat pump system with latent heat thermal energy storage," Energy, Elsevier, vol. 239(PA).
    12. Lu, Shilei & Lin, Quanyi & Xu, Bowen & Yue, Lu & Feng, Wei, 2023. "Thermodynamic performance of cascaded latent heat storage systems for building heating," Energy, Elsevier, vol. 282(C).
    13. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    2. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    3. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    4. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
    6. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    7. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    8. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    9. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    10. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    11. Haiming Long & Yunkun Lu & Liang Chang & Haifeng Zhang & Jingcen Zhang & Gaoqun Zhang & Junjie Hao, 2022. "Molecular Dynamics Simulation of Thermophysical Properties and the Microstructure of Na 2 CO 3 Heat Storage Materials," Energies, MDPI, vol. 15(19), pages 1-13, September.
    12. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    13. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    14. Zhou, Dan & Wu, Shaowen & Wu, Zhigen & Yu, Xingjuan, 2021. "Thermal performance analysis of multi-slab phase change thermal energy storage unit with heat transfer enhancement approaches," Renewable Energy, Elsevier, vol. 172(C), pages 46-56.
    15. Turrini, Sebastiano & Bettonte, Marco & Eccher, Massimo & Grigiante, Maurizio & Miotello, Antonio & Brusa, Roberto S., 2018. "An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system," Renewable Energy, Elsevier, vol. 123(C), pages 150-161.
    16. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    17. Shao, Y.L. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Thermal, exergy and economic analysis of a cascaded packed-bed tank with multiple phase change materials for district cooling system," Energy, Elsevier, vol. 268(C).
    18. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    19. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    20. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:228-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.