IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i2p541-554.html
   My bibliography  Save this article

Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations

Author

Listed:
  • Notton, G.
  • Lazarov, V.
  • Stoyanov, L.

Abstract

An optimal sizing methodology based on an energy approach is described and applied to grid-connected photovoltaic systems taking into account the photovoltaic module technology and inclination, the inverter type and the location. A model describing the efficiency for m-Si, p-Si, a-Si and CIS is used. The method has been applied on various meteorological stations in Bulgaria and Corsica (France). The main parameter affecting the sizing is the inverter efficiency curve. The influence of the PV module technology seems less important except for amorphous photovoltaic modules for which special remarks have been made. The inclination on the PV system influences the performances particularly when the inverter is undersized compared to the PV peak power.

Suggested Citation

  • Notton, G. & Lazarov, V. & Stoyanov, L., 2010. "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations," Renewable Energy, Elsevier, vol. 35(2), pages 541-554.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:2:p:541-554
    DOI: 10.1016/j.renene.2009.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109003085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    2. Nofuentes, G. & Almonacid, G., 1998. "An approach to the selection of the inverter for architecturally integrated photovoltaic grid-connected systems," Renewable Energy, Elsevier, vol. 15(1), pages 487-490.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    2. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    3. Bougiatioti, Flora & Michael, Aimilios, 2015. "The architectural integration of active solar systems. Building applications in the Eastern Mediterranean region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 966-982.
    4. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    5. Hartmann, N. & Glueck, C. & Schmidt, F.P., 2011. "Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates," Renewable Energy, Elsevier, vol. 36(5), pages 1329-1338.
    6. Ahmed O. Badr & Abdulsalam A. Aloukili & Metwally A. El-Sharkawy & Mariam A. Sameh & Mahmoud A. Attia, 2022. "Compensation of Distributed Generations Outage Using Controlled Switched Capacitors," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    7. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    8. Nasiri, Reza & Radan, Ahmad, 2011. "Pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays," Renewable Energy, Elsevier, vol. 36(2), pages 858-865.
    9. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).
    10. Hernandez, J. & Gordillo, G. & Vallejo, W., 2013. "Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature," Applied Energy, Elsevier, vol. 104(C), pages 527-537.
    11. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    12. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    13. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems," Renewable Energy, Elsevier, vol. 36(7), pages 2032-2042.
    14. Van der Veen, Reinier A.C. & De Vries, Laurens J., 2009. "The impact of microgeneration upon the Dutch balancing market," Energy Policy, Elsevier, vol. 37(7), pages 2788-2797, July.
    15. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    16. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani & Koskela, Liinu, 2021. "Linking socio-economic aspects to power system disruption models," Energy, Elsevier, vol. 222(C).
    17. Hannu S. Laine & Jyri Salpakari & Erin E. Looney & Hele Savin & Ian Marius Peters & Tonio Buonassisi, 2019. "Meeting Global Cooling Demand with Photovoltaics during the 21st Century," Papers 1902.10080, arXiv.org.
    18. Arie ten Cate, 2012. "The socially optimal energy transition in a residential neighbourhood in the Netherlands," CPB Discussion Paper 222, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    20. Izquierdo, M. & de Agustín-Camacho, P., 2015. "Solar heating by radiant floor: Experimental results and emission reduction obtained with a micro photovoltaic–heat pump system," Applied Energy, Elsevier, vol. 147(C), pages 297-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:2:p:541-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.