IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i2p430-434.html
   My bibliography  Save this article

Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply

Author

Listed:
  • Nouni, M.R.
  • Mullick, S.C.
  • Kandpal, T.C.

Abstract

This paper presents the results of a study undertaken for identifying niche areas in India where renewable energy based decentralized generation options can be financially more attractive as compared to grid extension for providing electricity. The cost of delivering electricity in remote areas considering cost of generation of electricity and also cost of its transmission and distribution in the country have been estimated. Considering electricity generated from coal thermal power plants, the delivered cost of electricity in remote areas, located in the distance range of 5–25km is found to vary from Rs. 3.18/kWh to Rs. 231.14/kWh depending on peak electrical load up to 100kW and load factor. The paper concludes that micro-hydro, dual fuel biomass gasifier systems, small wind electric generators and photovoltaic systems could be financially attractive as compared to grid extension for providing access to electricity in small remote villages.

Suggested Citation

  • Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2009. "Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply," Renewable Energy, Elsevier, vol. 34(2), pages 430-434.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:2:p:430-434
    DOI: 10.1016/j.renene.2008.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2006. "Photovoltaic projects for decentralized power supply in India: A financial evaluation," Energy Policy, Elsevier, vol. 34(18), pages 3727-3738, December.
    2. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Techno-economics of small wind electric generator projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 35(4), pages 2491-2506, April.
    3. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2006. "Techno-economics of micro-hydro projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 34(10), pages 1161-1174, July.
    4. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Biomass gasifier projects for decentralized power supply in India: A financial evaluation," Energy Policy, Elsevier, vol. 35(2), pages 1373-1385, February.
    5. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    6. Sinha, Chandra Shekhar & Kandpal, Tara Chandra, 1991. "Decentralized v grid electricity for rural India : The economic factors," Energy Policy, Elsevier, vol. 19(5), pages 441-448, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.
    3. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    4. Narula, Kapil & Nagai, Yu & Pachauri, Shonali, 2012. "The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030," Energy Policy, Elsevier, vol. 47(C), pages 345-357.
    5. Harish, Santosh M. & Morgan, Granger M. & Subrahmanian, Eswaran, 2014. "When does unreliable grid supply become unacceptable policy? Costs of power supply and outages in rural India," Energy Policy, Elsevier, vol. 68(C), pages 158-169.
    6. Meita Rumbayan & Rilya Rumbayan, 2023. "Feasibility Study of a Micro Hydro Power Plant for Rural Electrification in Lalumpe Village, North Sulawesi, Indonesia," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    7. Parihar, Amit Kumar Singh & Sethi, Virendra & Banerjee, Rangan, 2019. "Sizing of biomass based distributed hybrid power generation systems in India," Renewable Energy, Elsevier, vol. 134(C), pages 1400-1422.
    8. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    9. James Cust & Anoop Singh & Karsten Neuhoff, 2007. "Rural Electrification in India: Economic and Institutional aspects of Renewables," Working Papers EPRG 0730, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. A. Richard Swanson & Vivek Sakhrani, 2023. "Value–Risk Calculator for Blended Finance: A Systems Perspective of the Nachtigal Hydropower Project," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    11. Patel, Vimal R. & Upadhyay, Darshit S. & Patel, Rajesh N., 2014. "Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier," Energy, Elsevier, vol. 78(C), pages 323-332.
    12. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    13. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    14. Purohit, Pallav, 2009. "CO2 emissions mitigation potential of solar home systems under clean development mechanism in India," Energy, Elsevier, vol. 34(8), pages 1014-1023.
    15. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    16. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    17. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    18. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    19. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    20. Torero, Maximo, 2014. "The Impact of Rural Electrification," MPRA Paper 61425, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:2:p:430-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.