IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i6p877-892.html
   My bibliography  Save this article

Technical assessment of the use of a small-scale wind power system to meet the demand for electricity in a land aquafarm in Taiwan

Author

Listed:
  • Lai, Chi-ming
  • Lin, Ta-hui

Abstract

Due to the widespread aquaculture at coastal area in Taiwan and high wind power potential in the sites, it is worthy to carry out the technical potential assessments of small-scale wind power system used for aquaculture in Taiwan. The present work analyzed wind power potential, described the practical installation, measured the actual energy output, verified the reliability of the energy output estimation method and elucidated important considerations associated with the use of this estimation method. The relationship between the actual energy generated and the wind speed characteristics were thus introduced. The power quality produced by a small-scale wind power generator was also evaluated.

Suggested Citation

  • Lai, Chi-ming & Lin, Ta-hui, 2006. "Technical assessment of the use of a small-scale wind power system to meet the demand for electricity in a land aquafarm in Taiwan," Renewable Energy, Elsevier, vol. 31(6), pages 877-892.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:6:p:877-892
    DOI: 10.1016/j.renene.2005.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105001163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clausen, P.D. & Wood, D.H., 1999. "Research and development issues for small wind turbines," Renewable Energy, Elsevier, vol. 16(1), pages 922-927.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinn-Lih Yeh & Hans-Uwe Dahms & Ying-Jer Chiu & Su-Jung Chang & Yi-Kuang Wang, 2017. "Increased Production and Water Remediation by Land-Based Farm-Scale Sequentially Integrated Multi-Trophic Aquaculture Systems—An Example from Southern Taiwan," Sustainability, MDPI, vol. 9(12), pages 1-13, November.
    2. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    3. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    4. Herbert, G.M. Joselin & Iniyan, S. & Goic, Ranko, 2010. "Performance, reliability and failure analysis of wind farm in a developing Country," Renewable Energy, Elsevier, vol. 35(12), pages 2739-2751.
    5. Rahimi, Sahand & Meratizaman, Mousa & Monadizadeh, Sina & Amidpour, Majid, 2014. "Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area," Energy, Elsevier, vol. 67(C), pages 381-396.
    6. Shoaib, Muhammad & Siddiqui, Imran & Amir, Yousaf Muhammad & Rehman, Saif Ur, 2017. "Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1343-1351.
    7. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    8. Gugliani, Gaurav Kumar & Sarkar, Arnab & Ley, Christophe & Matsagar, Vasant, 2021. "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index," Renewable Energy, Elsevier, vol. 171(C), pages 902-914.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    2. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    3. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    4. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    5. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    6. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    7. Singh, Ronit K. & Ahmed, M. Rafiuddin & Zullah, Mohammad Asid & Lee, Young-Ho, 2012. "Design of a low Reynolds number airfoil for small horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 42(C), pages 66-76.
    8. Junseon Park & Seungjin Lee & Joong Yull Park, 2020. "Effects of the Angled Blades of Extremely Small Wind Turbines on Energy Harvesting Performance," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
    9. Mishnaevsky, Leon & Freere, Peter & Sinha, Rakesh & Acharya, Parash & Shrestha, Rakesh & Manandhar, Pushkar, 2011. "Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences," Renewable Energy, Elsevier, vol. 36(8), pages 2128-2138.
    10. Tan Woan Wen & C. Palanichamy & Gobbi Ramasamy, 2019. "Performance Optimization of Constant Speed - Small Horizontal Axis Wind Turbine (CS-SHAWT) for Wind Energy Development in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 280-290.
    11. Hossain, M.Z. & Hirahara, H. & Nonomura, Y. & Kawahashi, M., 2007. "The wake structure in a 2D grid installation of the horizontal axis micro wind turbines," Renewable Energy, Elsevier, vol. 32(13), pages 2247-2267.
    12. Mayer, C & Bechly, M.E & Hampsey, M & Wood, D.H, 2001. "The starting behaviour of a small horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(1), pages 411-417.
    13. Koca, Kemal & Genç, Mustafa Serdar & Açıkel, Halil Hakan & Çağdaş, Mücahit & Bodur, Tuna Murat, 2018. "Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution," Energy, Elsevier, vol. 144(C), pages 750-764.
    14. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:6:p:877-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.