IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp324-335.html
   My bibliography  Save this article

Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles

Author

Listed:
  • Ha, Subin
  • Zhou, Zixuan
  • Im, Eun-Soon
  • Lee, Young-Mi

Abstract

While the popularity and feasibility of solar power have increased toward achieving a low-carbon and climate-resilient society, it is uncertain how changes in climate attributes will affect the future potential of solar power output. This study presents a comparative assessment of future changes in solar power in terms of the technology for harnessing energy from insolation (PVP vs CSP), climate projections (CMIP5 vs CMIP6), and emission scenarios. Both CMIP5 and CMIP6 multi-model projections capture the major characteristics of the global distribution seen in PVP and CSP calculated using the reanalysis data during the historical period. However, despite the general similarity to CMIP5-based results, CMIP6 models slightly outperform their CMIP5 counterparts regarding quantitative metrics and enhance the robustness of the future change signal estimated by the statistical significance and inter-model consistency. The future changes in PVP and CSP patterns are sensitive to the emission scenarios that can control the degree of warming. Under the fossil-fueled development scenarios, the greater increase in temperatures may lead to a high vulnerability of the solar power supply by reducing the output of both PVP and CSP. This study is timely and relevant to emphasizing the benefits of climate change mitigation, which can support the sustainable development of solar energy.

Suggested Citation

  • Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:324-335
    DOI: 10.1016/j.renene.2023.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
    2. Pašičko, Robert & Branković, Čedo & Šimić, Zdenko, 2012. "Assessment of climate change impacts on energy generation from renewable sources in Croatia," Renewable Energy, Elsevier, vol. 46(C), pages 224-231.
    3. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Fadhl, Saeed Obaid, 2015. "Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 996-1027.
    4. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    5. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    6. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2019. "A review of the application performances of concentrated solar power systems," Applied Energy, Elsevier, vol. 255(C).
    7. Sawadogo, Windmanagda & Abiodun, Babatunde J. & Okogbue, Emmanuel C., 2020. "Impacts of global warming on photovoltaic power generation over West Africa," Renewable Energy, Elsevier, vol. 151(C), pages 263-277.
    8. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    9. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    10. Nogueira, Carlos Eduardo Camargo & Bedin, Janaína & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & das Neves, João Carlos Munhoz, 2015. "Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1610-1616.
    11. Sonia Jerez & Isabelle Tobin & Robert Vautard & Juan Pedro Montávez & Jose María López-Romero & Françoise Thais & Blanka Bartok & Ole Bøssing Christensen & Augustin Colette & Michel Déqué & Grigory Ni, 2015. "The impact of climate change on photovoltaic power generation in Europe," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    12. Mavromatakis, F. & Makrides, G. & Georghiou, G. & Pothrakis, A. & Franghiadakis, Y. & Drakakis, E. & Koudoumas, E., 2010. "Modeling the photovoltaic potential of a site," Renewable Energy, Elsevier, vol. 35(7), pages 1387-1390.
    13. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Author Correction: Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(4), pages 362-362, April.
    14. Müller, Johannes & Folini, Doris & Wild, Martin & Pfenninger, Stefan, 2019. "CMIP-5 models project photovoltaics are a no-regrets investment in Europe irrespective of climate change," Energy, Elsevier, vol. 171(C), pages 135-148.
    15. Husam Abdulrasool Hasan & Jenan S. Sherza & Jasim M. Mahdi & Hussein Togun & Azher M. Abed & Raed Khalid Ibrahim & Wahiba Yaïci, 2022. "Experimental Evaluation of the Thermoelectrical Performance of Photovoltaic-Thermal Systems with a Water-Cooled Heat Sink," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    16. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    17. Leirpoll, Malene Eldegard & Næss, Jan Sandstad & Cavalett, Otavio & Dorber, Martin & Hu, Xiangping & Cherubini, Francesco, 2021. "Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland," Renewable Energy, Elsevier, vol. 168(C), pages 45-56.
    18. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    19. Zuluaga, Cristian Felipe & Avila-Diaz, Alvaro & Justino, Flavio B. & Martins, Fernando Ramos & Ceron, Wilmar L., 2022. "The climate change perspective of photovoltaic power potential in Brazil," Renewable Energy, Elsevier, vol. 193(C), pages 1019-1031.
    20. Park, Changyong & Shin, Seok-Woo & Kim, Gayoung & Cha, Dong-Hyun & Min, Seung-Ki & Lee, Donghyun & Byun, Young-Hwa & Kim, Jin-Uk, 2022. "What determines future changes in photovoltaic potential over East Asia?," Renewable Energy, Elsevier, vol. 185(C), pages 338-347.
    21. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    2. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    3. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    5. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).
    6. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    7. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Zuluaga, Cristian Felipe & Avila-Diaz, Alvaro & Justino, Flavio B. & Martins, Fernando Ramos & Ceron, Wilmar L., 2022. "The climate change perspective of photovoltaic power potential in Brazil," Renewable Energy, Elsevier, vol. 193(C), pages 1019-1031.
    9. Leirpoll, Malene Eldegard & Næss, Jan Sandstad & Cavalett, Otavio & Dorber, Martin & Hu, Xiangping & Cherubini, Francesco, 2021. "Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland," Renewable Energy, Elsevier, vol. 168(C), pages 45-56.
    10. Erany D. G. Constantino & Senhorinha F. C. F. Teixeira & José C. F. Teixeira & Flavia V. Barbosa, 2022. "Innovative Solar Concentration Systems and Its Potential Application in Angola," Energies, MDPI, vol. 15(19), pages 1-28, September.
    11. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    12. Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
    13. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    14. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
    15. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    16. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    17. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    18. Zhao, Xiaohu & Huang, Guohe & Li, Yongping & Lu, Chen, 2023. "Responses of hydroelectricity generation to streamflow drought under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    19. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    20. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:324-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.