IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp920-940.html
   My bibliography  Save this article

Numerical evaluation of convective heat transfer properties of two-dimensional rotating PCM melt in the unilaterally heated rectangular container

Author

Listed:
  • Liu, Dinghai
  • Xie, Kai
  • Zhang, Hui
  • Qiang, Yujie
  • Yang, Di
  • Wang, Zhaoxiao
  • Zhu, Lidong
  • Akkurt, Nevzat
  • Du, Yanping
  • Shen, Meng
  • Zhong, Liqiong
  • Yu, Fan
  • Xu, Qian

Abstract

This paper carried out numerical investigations on the flow and heat transfer characteristics of a phase change with two-dimensional rotation of the three-dimensional paraffin (RT -27)-filled rectangular encapsulated container (PCM-REC) in space. A three-dimensional transient numerical heat transfer model was established and the enthalpy method was used to simulate the solid-liquid phase transition process and the flow evolution at the PCM interface. In this paper, the solid-liquid interface distribution, temperature distribution and melting time of PCM in PCM-REC heated at a constant temperature on one side were compared when rotated at different angles (0°, arctan (0.4), 2arctan (0.4) and 90°) along the heating direction and vertical heating direction. Results demonstrated that the peak value of maximum natural convection velocity increased from 0.0072 m/s to 0.0184 m/s with increasing radial height when PCM-REC was rotated in vertical heating direction. When PCM-REC was rotated in two dimensions by the same angle, the melting time was fastest when γ was an obtuse angle, and with the increase of the obtuse angle, the melting time shortened from 17 min to 6 min; when γ was an acute angle, the melting time was slowest, and with the decrease of the acute angle, the melting time lengthened from 49 min to 288 min.

Suggested Citation

  • Liu, Dinghai & Xie, Kai & Zhang, Hui & Qiang, Yujie & Yang, Di & Wang, Zhaoxiao & Zhu, Lidong & Akkurt, Nevzat & Du, Yanping & Shen, Meng & Zhong, Liqiong & Yu, Fan & Xu, Qian, 2022. "Numerical evaluation of convective heat transfer properties of two-dimensional rotating PCM melt in the unilaterally heated rectangular container," Renewable Energy, Elsevier, vol. 193(C), pages 920-940.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:920-940
    DOI: 10.1016/j.renene.2022.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Duan & Yongliang Xiong & Dan Yang, 2019. "On the Melting Process of the Phase Change Material in Horizontal Rectangular Enclosures," Energies, MDPI, vol. 12(16), pages 1-21, August.
    2. Guo, Junfei & Liu, Zhan & Yang, Bo & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube," Renewable Energy, Elsevier, vol. 183(C), pages 406-422.
    3. Dhaidan, Nabeel S. & Khodadadi, J.M., 2015. "Melting and convection of phase change materials in different shape containers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 449-477.
    4. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    5. Yu, Qiang & Zhang, Cancan & Lu, Yuanwei & Kong, Qinglong & Wei, Haijiao & Yang, Yanchun & Gao, Qi & Wu, Yuting & Sciacovelli, Adriano, 2021. "Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1120-1132.
    6. Archibold, Antonio Ramos & Gonzalez-Aguilar, José & Rahman, Muhammad M. & Yogi Goswami, D. & Romero, Manuel & Stefanakos, Elias K., 2014. "The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells," Applied Energy, Elsevier, vol. 116(C), pages 243-252.
    7. Xu, Qian & Wang, Kang & Zou, Zhenwei & Zhong, Liqiong & Akkurt, Nevzat & Feng, Junxiao & Xiong, Yaxuan & Han, Jingxiao & Wang, Jiulong & Du, Yanping, 2021. "A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tavakoli, Ali & Farzaneh-Gord, Mahmood & Ebrahimi-Moghadam, Amir, 2023. "Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses," Renewable Energy, Elsevier, vol. 205(C), pages 222-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    2. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.
    3. Huang, Xinyu & Li, Fangfei & Li, Yuanji & Meng, Xiangzhao & Yang, Xiaohu & Sundén, Bengt, 2023. "Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method," Energy, Elsevier, vol. 271(C).
    4. Zeneli, M. & Malgarinos, I. & Nikolopoulos, A. & Nikolopoulos, N. & Grammelis, P. & Karellas, S. & Kakaras, E., 2019. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures," Applied Energy, Elsevier, vol. 242(C), pages 837-853.
    5. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    6. Chrysa Politi & Antonis Peppas & Maria Taxiarchou, 2023. "Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    7. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    8. Al-Jethelah, Manar & Tasnim, Syeda Humaira & Mahmud, Shohel & Dutta, Animesh, 2018. "Nano-PCM filled energy storage system for solar-thermal applications," Renewable Energy, Elsevier, vol. 126(C), pages 137-155.
    9. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    10. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    11. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
    12. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    13. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    14. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    15. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    16. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    17. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    18. Zhou, Dan & Wu, Shaowen & Wu, Zhigen & Yu, Xingjuan, 2021. "Thermal performance analysis of multi-slab phase change thermal energy storage unit with heat transfer enhancement approaches," Renewable Energy, Elsevier, vol. 172(C), pages 46-56.
    19. Kasper, Lukas & Pernsteiner, Dominik & Schirrer, Alexander & Jakubek, Stefan & Hofmann, René, 2023. "Experimental characterization, parameter identification and numerical sensitivity analysis of a novel hybrid sensible/latent thermal energy storage prototype for industrial retrofit applications," Applied Energy, Elsevier, vol. 344(C).
    20. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:920-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.