IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v218y2021ics0360544220326761.html
   My bibliography  Save this article

A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system

Author

Listed:
  • Xu, Qian
  • Wang, Kang
  • Zou, Zhenwei
  • Zhong, Liqiong
  • Akkurt, Nevzat
  • Feng, Junxiao
  • Xiong, Yaxuan
  • Han, Jingxiao
  • Wang, Jiulong
  • Du, Yanping

Abstract

Based on the design concept of a fourth-generation smart pipe network system, this paper innovatively proposes a new TOTS (Two-supply/One-return, triple pipe structure) arrangement method for district heating systems. Moreover, to accurately predict the heat loss due to the pipeline operation of the multi-pipe system, based on the multipole calculation method, a new heat loss theoretical analytical model for the TOTS was created; additionally, a corresponding three-dimensional numerical simulation model was established, which was analyzed and numerically solved. The results showed that in comparison with thermal loss data measured by Danfoss et al., the above analytical and numerical models have a high accuracy, and the deviation is within 2%. Additionally, through calculations, it was found that the distance between the heating pipes is an important factor that affects the total heat loss from the new multi-control heating system and the actual heat exchange between pipes.

Suggested Citation

  • Xu, Qian & Wang, Kang & Zou, Zhenwei & Zhong, Liqiong & Akkurt, Nevzat & Feng, Junxiao & Xiong, Yaxuan & Han, Jingxiao & Wang, Jiulong & Du, Yanping, 2021. "A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system," Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326761
    DOI: 10.1016/j.energy.2020.119569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dolna, Oktawia & Mikielewicz, Jarosław, 2020. "The ground impact on the ultra-low- and low-temperature district heating operation," Renewable Energy, Elsevier, vol. 146(C), pages 1232-1241.
    2. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
    3. Milad Khosravi & Ahmad Arabkoohsar, 2019. "Thermal-Hydraulic Performance Analysis of Twin-Pipes for Various Future District Heating Schemes," Energies, MDPI, vol. 12(7), pages 1-17, April.
    4. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Liu, Wen & Klip, Diederik & Zappa, William & Jelles, Sytse & Kramer, Gert Jan & van den Broek, Machteld, 2019. "The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands," Energy, Elsevier, vol. 189(C).
    7. Alsagri, Ali Sulaiman & Arabkoohsar, Ahmad & Khosravi, Milad & Alrobaian, Abdulrahman A., 2019. "Efficient and cost-effective district heating system with decentralized heat storage units, and triple-pipes," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    2. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    3. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
    4. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    5. Wang, Kang & Xie, Kai & Zhang, Hui & Qiang, Yujie & Du, Yanping & Xiong, Yaxuan & Zou, Zhenwei & Zhang, Mingbao & Zhong, Liqiong & Akkurt, Nevzat & Chen, Ning & Xu, Qian, 2022. "Numerical evaluation of the coupled/uncoupled effectiveness of a fluid-solid-thermal multi-field model for a long-distance energy transmission pipeline," Energy, Elsevier, vol. 251(C).
    6. Liu, Dinghai & Xie, Kai & Zhang, Hui & Qiang, Yujie & Yang, Di & Wang, Zhaoxiao & Zhu, Lidong & Akkurt, Nevzat & Du, Yanping & Shen, Meng & Zhong, Liqiong & Yu, Fan & Xu, Qian, 2022. "Numerical evaluation of convective heat transfer properties of two-dimensional rotating PCM melt in the unilaterally heated rectangular container," Renewable Energy, Elsevier, vol. 193(C), pages 920-940.
    7. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    8. Huseyin Gunhan Ozcan & Arif Hepbasli & Aysegul Abusoglu & Amjad Anvari-Moghaddam, 2021. "Advanced Exergy Analysis of Waste-Based District Heating Options through Case Studies," Energies, MDPI, vol. 14(16), pages 1-21, August.
    9. Zi-Xuan Yu & Meng-Shi Li & Yi-Peng Xu & Sheraz Aslam & Yuan-Kang Li, 2021. "Techno-Economic Planning and Operation of the Microgrid Considering Real-Time Pricing Demand Response Program," Energies, MDPI, vol. 14(15), pages 1-28, July.
    10. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    11. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    12. Binyamin Binyamin & Ocktaeck Lim, 2023. "Numerical Analysis of the Structural and Flow Rate Characteristics of the Fuel Injection Pump in a Marine Diesel Engine," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    13. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    14. Cao, Yan & Ayed, Hamdi & Hashemian, Mehran & Issakhov, Alibek & Jarad, Fahd & Wae-hayee, Makatar, 2021. "Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance," Renewable Energy, Elsevier, vol. 180(C), pages 1344-1357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "Thermodynamic analysis of ultralow-temperature district heating system with shared power heat pumps and triple-pipes," Energy, Elsevier, vol. 194(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    4. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    6. Hiltunen, Pauli & Syri, Sanna, 2021. "Low-temperature waste heat enabling abandoning coal in Espoo district heating system," Energy, Elsevier, vol. 231(C).
    7. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    8. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
    10. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
    11. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    12. Leoni, Paolo & Geyer, Roman & Schmidt, Ralf-Roman, 2020. "Developing innovative business models for reducing return temperatures in district heating systems: Approach and first results," Energy, Elsevier, vol. 195(C).
    13. Chicherin, Stanislav & Zhuikov, Andrey & Junussova, Lyazzat, 2022. "The new method for hydraulic calculations of a district heating (DH) network," Energy, Elsevier, vol. 260(C).
    14. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    15. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    17. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    18. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.