IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp396-404.html
   My bibliography  Save this article

Lime pretreatment of pelleted corn stover boosts ethanol titers and yields without water washing or detoxifying pretreated biomass

Author

Listed:
  • Chen, Xiangxue
  • Liu, Shuangmei
  • Zhai, Rui
  • Yuan, Xinchuan
  • Yu, Yang
  • Shen, Guannan
  • Wang, Zhao
  • Yu, Jianming
  • Jin, Mingjie

Abstract

Large-scale industrial cellulosic ethanol production is significantly restricted by the high costs of lignocellulosic biomass handling, transportation and storage. Therefore, biomass densification is thought to be necessary to solve these logistical problems. Nevertheless, because of its high density, densified biomass may have an impact on subsequent biomass processing. In this study, lime pretreatment was investigated on pelleted corn stover (PCS) for ethanol production. The glucan and xylan conversions of lime-PCS exceeded 90% via enzymatic hydrolysis after optimization of pretreatment conditions. Corn stover was characterized using the flourier transform infrared spectrum (FT-IR) and scanning electron microscopy (SEM), which revealed that after lime pretreatment, the acetyl groups in biomass were removed and cell wall decomposition products redeposited on outer cell wall surfaces. Finally, without washing or detoxifying pretreated biomass, enzymatic hydrolysis and fermentation resulted in a high ethanol titer (65.1 g/L). The results indicated that lime pretreatment is efficient in pretreating PCS.

Suggested Citation

  • Chen, Xiangxue & Liu, Shuangmei & Zhai, Rui & Yuan, Xinchuan & Yu, Yang & Shen, Guannan & Wang, Zhao & Yu, Jianming & Jin, Mingjie, 2022. "Lime pretreatment of pelleted corn stover boosts ethanol titers and yields without water washing or detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 192(C), pages 396-404.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:396-404
    DOI: 10.1016/j.renene.2022.04.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    2. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    3. Zhang, Qi & Zhang, Pengfei & Pei, Zhijian & Rys, Malgorzata & Wang, Donghai & Zhou, Jiping, 2016. "Ultrasonic vibration-assisted pelleting of cellulosic biomass for ethanol manufacturing: An investigation on pelleting temperature," Renewable Energy, Elsevier, vol. 86(C), pages 895-908.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    2. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    3. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    4. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    5. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    6. Franco Cotana & Gianluca Cavalaglio & Valentina Coccia & Alessandro Petrozzi, 2016. "Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study," Energies, MDPI, vol. 9(9), pages 1-10, September.
    7. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    8. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.
    9. Gabriele Mancini & Stefano Papirio & Piet N. L. Lens & Giovanni Esposito, 2019. "A Preliminary Study of the Effect of Bioavailable Fe and Co on the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 12(4), pages 1-11, February.
    10. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    11. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    12. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    13. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    15. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    16. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    18. Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
    19. Ngan, Sue Lin & How, Bing Shen & Teng, Sin Yong & Leong, Wei Dong & Loy, Adrian Chun Minh & Yatim, Puan & Promentilla, Michael Angelo B. & Lam, Hon Loong, 2020. "A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:396-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.