IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp714-724.html
   My bibliography  Save this article

High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo

Author

Listed:
  • Lin, Shunda
  • Liu, Renlong
  • Guo, Shenghui

Abstract

It is important to effectively and in an environmentally friendly manner, recover metallic elements such as lithium and manganese from waste lithium-manganese batteries. In this work, the changes in the dielectric and thermochemical properties of mixtures of waste LixMn2O4 battery cathode materials and moso bamboo during a microwave heating process were studied in detail using moso bamboo as the reducing agent. The dielectric properties of the mixed materials were measured by the cylindrical cavity perturbation method.

Suggested Citation

  • Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:714-724
    DOI: 10.1016/j.renene.2021.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    2. El Khaled, D. & Novas, N. & Gazquez, J.A. & Manzano-Agugliaro, F., 2018. "Microwave dielectric heating: Applications on metals processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2880-2892.
    3. Ordoñez, J. & Gago, E.J. & Girard, A., 2016. "Processes and technologies for the recycling and recovery of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 195-205.
    4. Paul W. Gruber & Pablo A. Medina & Gregory A. Keoleian & Stephen E. Kesler & Mark P. Everson & Timothy J. Wallington, 2011. "Global Lithium Availability," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 760-775, October.
    5. Rebecca E. Ciez & J. F. Whitacre, 2019. "Examining different recycling processes for lithium-ion batteries," Nature Sustainability, Nature, vol. 2(2), pages 148-156, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Jiajia & Zhang, Yanqiong & Huang, Weiwei & Omran, Mamdouh & Zhang, Fan & Gao, Lei & Chen, Guo, 2023. "Reductive roasting of cathode powder of spent ternary lithium-ion battery by pyrolysis of invasive plant Crofton weed," Renewable Energy, Elsevier, vol. 206(C), pages 86-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    3. Weimer, Lucas & Braun, Tobias & Hemdt, Ansgar vom, 2019. "Design of a systematic value chain for lithium-ion batteries from the raw material perspective," Resources Policy, Elsevier, vol. 64(C).
    4. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    5. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.
    7. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    8. Perotti, Remco & Coviello, Manlio, 2015. "Governance of strategic minerals in Latin America: the case of Lithium," Documentos de Proyectos 38961, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    11. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    12. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
    13. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    14. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    15. Zhiwen Zhou & Yiming Lai & Qin Peng & Jun Li, 2021. "Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries," Energies, MDPI, vol. 14(19), pages 1-18, October.
    16. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
    17. Ashraf Mishrif & Asharul Khan, 2023. "Clean Energy Transition through the Sustainable Exploration and Use of Lithium in Oman: Potential and Challenges," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    18. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
    19. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    20. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:714-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.