IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp116-128.html
   My bibliography  Save this article

A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece

Author

Listed:
  • Soulis, Konstantinos X.
  • Manolakos, Dimitris
  • Ntavou, Erika
  • Kosmadakis, George

Abstract

Renewable energy potential depends on many variables that vary both in space and time. Therefore, geospatial analysis approaches may effectively support proper planning and technoeconomic analysis. In this study, a simulation model of a two-stage Organic Rankine Cycle (ORC) engine combined with evacuated tube solar collectors was developed and applied throughout Greece. The simulation model uses daily meteorological data for a thirty-four years reference period. These data are downscaled in hourly time step and used to predict the system's performance in spatially distributed form based on experimental data. The obtained results are statistically analysed and a set of ranking maps presenting various aspects of the integrated system performance is created. The results indicate that there is a profound spatial variability. The interannual average power production ranges spatially between 17.4 and 27.7 kWh/d, the total efficiency between 0.022 and 0.028 and the corresponding energy cost between 0.41 and 0.7 €/kWh. Finally, the effect of climate variability on energy production performance and the presence of trends are investigated. The proposed approach was proven to be an effective tool for the assessment of the feasibility and potential of a solar heat-to-power engine for Greece and to be expanded in other regions as well.

Suggested Citation

  • Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:116-128
    DOI: 10.1016/j.renene.2021.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Wei & Tang, Xiao-Ping & Yang, Chao & Guo, Nai-Jia & Liu, Hong-Bin, 2013. "Spatial estimation of monthly mean daily sunshine hours and solar radiation across mainland China," Renewable Energy, Elsevier, vol. 57(C), pages 546-553.
    2. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    3. Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
    4. M. Mardikis & D. Kalivas & V. Kollias, 2005. "Comparison of Interpolation Methods for the Prediction of Reference Evapotranspiration—An Application in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 251-278, June.
    5. Bloomfield, H.C. & Brayshaw, D.J. & Troccoli, A. & Goodess, C.M. & De Felice, M. & Dubus, L. & Bett, P.E. & Saint-Drenan, Y.-M., 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Renewable Energy, Elsevier, vol. 164(C), pages 1062-1075.
    6. Konstantinos X. Soulis & Emmanouil Psomiadis & Paraskevi Londra & Dimitris Skuras, 2020. "A New Model-Based Approach for the Evaluation of the Net Contribution of the European Union Rural Development Program to the Reduction of Water Abstractions in Agriculture," Sustainability, MDPI, vol. 12(17), pages 1-25, September.
    7. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    8. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    9. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis," Renewable Energy, Elsevier, vol. 33(6), pages 1237-1250.
    10. Wang, J.L. & Zhao, L. & Wang, X.D., 2010. "A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle," Applied Energy, Elsevier, vol. 87(11), pages 3366-3373, November.
    11. Xianxun Wang & Lihua Chen & Qijuan Chen & Yadong Mei & Hao Wang, 2018. "Model and Analysis of Integrating Wind and PV Power in Remote and Core Areas with Small Hydropower and Pumped Hydropower Storage," Energies, MDPI, vol. 11(12), pages 1-24, December.
    12. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    13. Kosmadakis, George & Landelle, Arnaud & Lazova, Marija & Manolakos, Dimitris & Kaya, Alihan & Huisseune, Henk & Karavas, Christos-Spyridon & Tauveron, Nicolas & Revellin, Remi & Haberschill, Philippe , 2016. "Experimental testing of a low-temperature organic Rankine cycle (ORC) engine coupled with concentrating PV/thermal collectors: Laboratory and field tests," Energy, Elsevier, vol. 117(P1), pages 222-236.
    14. François, B. & Zoccatelli, D. & Borga, M., 2017. "Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods," Energy, Elsevier, vol. 127(C), pages 716-729.
    15. Ntavou, Erika & Kosmadakis, George & Manolakos, Dimitris & Papadakis, George & Papantonis, Dimitris, 2017. "Experimental testing of a small-scale two stage Organic Rankine Cycle engine operating at low temperature," Energy, Elsevier, vol. 141(C), pages 869-879.
    16. Zagouras, Athanassios & Kolovos, Alexander & Coimbra, Carlos F.M., 2015. "Objective framework for optimal distribution of solar irradiance monitoring networks," Renewable Energy, Elsevier, vol. 80(C), pages 153-165.
    17. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    18. H.C. Bloomfield & D.J. Brayshaw & A. Troccoli & C.M. Goodess & M. de Felice & L. Dubus & P.E. Bett & Yves-Marie Saint-Drenan, 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Post-Print hal-03113026, HAL.
    19. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    20. Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
    21. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    22. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    23. Tamm, Ottar & Tamm, Toomas, 2020. "Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS," Renewable Energy, Elsevier, vol. 155(C), pages 153-159.
    24. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    25. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    26. Petrollese, Mario & Cocco, Daniele, 2020. "A multi-scenario approach for a robust design of solar-based ORC systems," Renewable Energy, Elsevier, vol. 161(C), pages 1184-1194.
    27. Saioa Etxebarria Berrizbeitia & Eulalia Jadraque Gago & Tariq Muneer, 2020. "Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis," Energies, MDPI, vol. 13(3), pages 1-23, February.
    28. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    29. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    30. Punys, Petras & Kvaraciejus, Algis & Dumbrauskas, Antanas & Šilinis, Linas & Popa, Bogdan, 2019. "An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries," Renewable Energy, Elsevier, vol. 133(C), pages 1108-1123.
    31. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2020. "The Ottana solar facility: dispatchable power from small-scale CSP plants based on ORC systems," Renewable Energy, Elsevier, vol. 147(P3), pages 2932-2943.
    32. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: A neural kriging application," Renewable Energy, Elsevier, vol. 33(6), pages 1251-1266.
    33. Rehman, Shafiqur & Ghori, Saleem G, 2000. "Spatial estimation of global solar radiation using geostatistics," Renewable Energy, Elsevier, vol. 21(3), pages 583-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xinxin & Li, Yang & Zhang, Yin & Zhang, Congtian, 2023. "A method used to comprehensively evaluate dry and isentropic organic working fluids based on temperature-entropy (T-s) diagram," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamm, Ottar & Tamm, Toomas, 2020. "Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS," Renewable Energy, Elsevier, vol. 155(C), pages 153-159.
    2. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Abdelhady, Hazem U. & Imam, Yehya E. & Shawwash, Ziad & Ghanem, Ashraf, 2021. "Parallelized Bi-level optimization model with continuous search domain for selection of run-of-river hydropower projects," Renewable Energy, Elsevier, vol. 167(C), pages 116-131.
    4. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2011. "Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions," Applied Energy, Elsevier, vol. 88(9), pages 2995-3004.
    6. Yu, Haoshui & Feng, Xiao & Wang, Yufei & Biegler, Lorenz T. & Eason, John, 2016. "A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries," Applied Energy, Elsevier, vol. 179(C), pages 302-315.
    7. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    8. Jurasz, Jakub & Kies, Alexander & Zajac, Pawel, 2020. "Synergetic operation of photovoltaic and hydro power stations on a day-ahead energy market," Energy, Elsevier, vol. 212(C).
    9. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    10. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    11. Marija Lazova & Alihan Kaya & Marijn Billiet & Steven Lecompte & Dimitris Manolakos & Michel De Paepe, 2017. "Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle," Energies, MDPI, vol. 10(5), pages 1-18, May.
    12. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    13. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    14. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    15. Markus Preißinger & Dieter Brüggemann, 2017. "Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities," Energies, MDPI, vol. 10(3), pages 1-23, February.
    16. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    17. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    18. Efthymios Moutsiakis & Athena Yiannakou, 2023. "Small Hydroelectric Energy and Spatial Planning: A Methodology Introducing the Concept of Territorial Carrying Capacity," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    19. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    20. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:116-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.