IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp297-312.html
   My bibliography  Save this article

Solar desalination unit coupled with a novel humidifier

Author

Listed:
  • El-Said, Emad M.S.
  • Dahab, Mohamed A.
  • Omara, M.
  • Abdelaziz, Gamal B.

Abstract

The solar desalination system is experimentally investigated according to humidification dehumidification methodology (HDH) with hot air stream flow and heat pump as a condensation unit. The effects of high frequency ultrasound atomizer number, water height and hot air stream flow rate on distillate yield are studied. The results illustrated that increasing of atomizer number and decreasing water height increases the daily distillate production. The maximum daily freshwater productivity occurred at six atomizer number with an increase of 38.6% and 115% compared with atomizer number four and two, respectively. Furthermore, water height at 1 cm is the most efficient with an increment of 16% and 28.6% compared with 2 cm and 3 cm, respectively. The optimum hot air stream flow rate is 0.011 kg/s with an increment of 36.88%, 31.07%, 6.48%, 11.72%, 23.52% and 38.60% compared with 0.009, 0.010, 0.013, 0.014, 0.016, and 0.017 kg/s, flow rates, respectively. The air mass flow rate has a significant impact on system performance. The maximum gain output ratio (GOR) of the system is about 1.54. The daily production reaches 7.72 kg∖day, the system energy efficiency is 33.84% and 1.43% exergy efficiency the estimated cost is 0.0112 US$/L.

Suggested Citation

  • El-Said, Emad M.S. & Dahab, Mohamed A. & Omara, M. & Abdelaziz, Gamal B., 2021. "Solar desalination unit coupled with a novel humidifier," Renewable Energy, Elsevier, vol. 180(C), pages 297-312.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:297-312
    DOI: 10.1016/j.renene.2021.08.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabeel, A.E. & Abdelgaied, Mohamed & El-Said, Emad M.S., 2017. "Study of a solar-driven membrane distillation system: Evaporative cooling effect on performance enhancement," Renewable Energy, Elsevier, vol. 106(C), pages 192-200.
    2. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    3. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elhenawy, Yasser & Bassyouni, Mohamed & Fouad, Kareem & Sandid, Abdelfatah Marni & Abu-Zeid, Mostafa Abd El-Rady & Majozi, Thokozani, 2023. "Experimental and numerical simulation of solar membrane distillation and humidification – dehumidification water desalination system," Renewable Energy, Elsevier, vol. 215(C).
    2. El-Said, Emad M.S. & Dahab, Mohamed A. & Omara, Mohamed A. & Abdelaziz, Gamal B., 2022. "Humidification-dehumidification solar desalination system using porous activated carbon tubes as a humidifier," Renewable Energy, Elsevier, vol. 187(C), pages 657-670.
    3. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    4. Khalaf-Allah, Reda A. & Abdelaziz, Gamal B. & Kandel, Mohamed G. & Easa, Ammar S., 2022. "Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions," Renewable Energy, Elsevier, vol. 190(C), pages 1041-1054.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Dahiru U. Lawal & Mohamed A. Antar & Atia E. Khalifa, 2021. "Integration of a MSF Desalination System with a HDH System for Brine Recovery," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    3. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    4. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    5. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Ali Babaeebazaz & Shiva Gorjian & Majid Amidpour, 2021. "Integration of a Solar Parabolic Dish Collector with a Small-Scale Multi-Stage Flash Desalination Unit: Experimental Evaluation, Exergy and Economic Analyses," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    9. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    10. David Katz & Arkadiy Shafran, 2019. "Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East," Energies, MDPI, vol. 12(8), pages 1-21, April.
    11. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    12. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    13. Fahid Riaz & Fu Zhi Yam & Muhammad Abdul Qyyum & Muhammad Wakil Shahzad & Muhammad Farooq & Poh Seng Lee & Moonyong Lee, 2021. "Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems," Energies, MDPI, vol. 14(10), pages 1-21, May.
    14. Mohammad Akrami & Husain Alsari & Akbar A. Javadi & Mahdieh Dibaj & Raziyeh Farmani & Hassan E.S. Fath & Alaa H. Salah & Abdelazim Negm, 2020. "Analysing the Material Suitability and Concentration Ratio of a Solar-Powered Parabolic trough Collector (PTC) Using Computational Fluid Dynamics," Energies, MDPI, vol. 13(20), pages 1-17, October.
    15. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    16. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    17. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Ghafurian, Mohammad Mustafa & Niazmand, Hamid & Ebrahimnia-Bajestan, Ehsan & Taylor, Robert A., 2020. "Wood surface treatment techniques for enhanced solar steam generation," Renewable Energy, Elsevier, vol. 146(C), pages 2308-2315.
    19. Xu, Haiyang & Ji, Xu & Wang, Liuling & Huang, Jingxin & Han, Jingyang & Wang, Yue, 2020. "Performance study on a small-scale photovoltaic electrodialysis system for desalination," Renewable Energy, Elsevier, vol. 154(C), pages 1008-1013.
    20. Dong-Wan Cho & Gihoon Kwon & Jeongmin Han & Hocheol Song, 2019. "Influence of humic acid on the long-term performance of direct contact membrane distillation," Energy & Environment, , vol. 30(1), pages 109-120, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:297-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.