IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp1017-1026.html
   My bibliography  Save this article

Mitigating the negative impact of soluble and insoluble lignin in biorefineries

Author

Listed:
  • Pinto, Ariane S.S.
  • Brondi, Mariana G.
  • de Freitas, Juliana V.
  • Furlan, Felipe F.
  • Ribeiro, Marcelo P.A.
  • Giordano, Roberto C.
  • Farinas, Cristiane S.

Abstract

The presence of inhibitors is still an economic bottleneck that needs to be resolved in order to make the biorefineries feasible, requiring the development of technologies capable of improving their competitiveness in the biofuel marketplace. Soluble and insoluble lignin can impair the enzymatic hydrolysis process by inhibition, deactivation, and unproductive adsorption of enzymes. Washing the pretreated biomass or using lignin-blocking additives during saccharification could mitigate these negative effects in future biorefineries. Here, an investigation was performed of the combined mitigation processes, in terms of their technical and economic feasibility in an integrated first and second generation (1G2G) sugarcane biorefinery. Evaluation was made of the impacts of biomass washing and soybean protein addition, separately or in combination, on glucose yields for enzymatic hydrolysis in the presence of high (liquor) and low (buffer) concentrations of soluble inhibitors/deactivators. Combining washing and soybean protein addition provided the highest glucose yields, with an increase of up to 50%. The effect of the mitigation processes could be explained by a combination of catalytic mechanisms acting on both soluble and insoluble lignin. In an industrial context, biomass washing (90 °C, 15% (w/w) solids, 3 steps) followed by soybean protein addition (12% (w/v) solids) provided a cost-competitive methodology for bioethanol production, with an estimated net present value of US$ 9.16 × 107, optimizing hydrolysis process in the 1G2G sugarcane biorefinery.

Suggested Citation

  • Pinto, Ariane S.S. & Brondi, Mariana G. & de Freitas, Juliana V. & Furlan, Felipe F. & Ribeiro, Marcelo P.A. & Giordano, Roberto C. & Farinas, Cristiane S., 2021. "Mitigating the negative impact of soluble and insoluble lignin in biorefineries," Renewable Energy, Elsevier, vol. 173(C), pages 1017-1026.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:1017-1026
    DOI: 10.1016/j.renene.2021.03.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    2. Ajmi, Ahdi Noomen & Inglesi-Lotz, Roula, 2020. "Biomass energy consumption and economic growth nexus in OECD countries: A panel analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1649-1654.
    3. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed, Mahdy & Li, Wu & Abdalla, Nashwa S. & Ai, Ping & Zhang, Yanlin & Abomohra, Abd El-Fatah, 2022. "Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery," Renewable Energy, Elsevier, vol. 188(C), pages 211-222.
    2. Ouyang, Denghao & Chen, Hongmei & Liu, Nan & Zhang, Jingzhi & Zhao, Xuebing, 2022. "Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds," Renewable Energy, Elsevier, vol. 185(C), pages 196-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borujeni, Nasim Espah & Alavijeh, Masih Karimi & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits," Renewable Energy, Elsevier, vol. 208(C), pages 275-286.
    2. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.
    3. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    4. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    5. Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
    6. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    7. d'Amore, Federico & Bezzo, Fabrizio, 2017. "Managing technology performance risk in the strategic design of biomass-based supply chains for energy in the transport sector," Energy, Elsevier, vol. 138(C), pages 563-574.
    8. Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
    9. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
    10. Marcela Sofia Pino & Michele Michelin & Rosa M. Rodríguez-Jasso & Alfredo Oliva-Taravilla & José A. Teixeira & Héctor A. Ruiz, 2021. "Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse," Energies, MDPI, vol. 14(16), pages 1-16, August.
    11. Shahzad, Umer & Schneider, Nicolas & Ben Jebli, Mehdi, 2021. "How coal and geothermal energies interact with industrial development and carbon emissions? An autoregressive distributed lags approach to the Philippines," Resources Policy, Elsevier, vol. 74(C).
    12. Soo-Kyeong Jang & Hanseob Jeong & In-Gyu Choi, 2023. "The Effect of Cellulose Crystalline Structure Modification on Glucose Production from Chemical-Composition-Controlled Biomass," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    13. Zhang, Qianxiao & Shah, Syed Ale Raza & Yang, Ling, 2022. "An Appreciated Response of Disaggregated Energies Consumption towards the Sustainable Growth: A debate on G-10 Economies," Energy, Elsevier, vol. 254(PA).
    14. Fumi Harahap & Sylvain Leduc & Sennai Mesfun & Dilip Khatiwada & Florian Kraxner & Semida Silveira, 2019. "Opportunities to Optimize the Palm Oil Supply Chain in Sumatra, Indonesia," Energies, MDPI, vol. 12(3), pages 1-24, January.
    15. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    16. Chang, Tsangyao & Hsu, Chen-Min & Chen, Sheng-Tung & Wang, Mei-Chih & Wu, Cheng-Feng, 2023. "Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 319-342.
    17. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    18. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Naqvi, Syed Asif Ali & Hussain, Mehvish & Hussain, Bilal & Shah, Syed Ale Raza & Nazir, Jawad & Usman, Muhammad, 2023. "Environmental sustainability and biomass energy consumption through the lens of pollution Haven hypothesis and renewable energy-environmental kuznets curve," Renewable Energy, Elsevier, vol. 212(C), pages 621-631.
    20. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:1017-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.