IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017683.html
   My bibliography  Save this article

Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties

Author

Listed:
  • Sadeghi Darvazeh, Saeed
  • Mansoori Mooseloo, Farzaneh
  • Gholian-Jouybari, Fatemeh
  • Amiri, Maghsoud
  • Bonakdari, Hossein
  • Hajiaghaei-Keshteli, Mostafa

Abstract

The consequences of using costly, nonrenewable, and nonsustainable fossil fuels have forced countries to focus on renewable energy resources. In addition, the necessity of smooth material and information flow in the supply chain has motivated scholars to invent different mathematical approaches to designing an integrated supply chain. Such an integrated biomass-to-electricity supply chain can guarantee smooth material and information flow in the supply chain. To this end, a data-driven robust optimization approach under disjunctive uncertainties is developed for designing and optimizing an integrated sustainable biomass-to-electricity supply chain network. Instead of assuming uncertain parameters data to be less scattered or almost uniform, an uncertainty set based on data with disjunctive structures is proposed to identify the uncertainty space more accurately and flexibly. Specifically, the data on uncertain parameters are clustered using the K-means technique. Then, the primary uncertainty sets are formed for each cluster. The proposed uncertain parameter space is constructed by incorporating these primary uncertainty sets, which form using support vector clustering. We studied a case in Iran to probe the performance of the proposed approach. The computational results indicate that the proposed framework provides maximum protection against disjunctive uncertainty with minimum robustness price.

Suggested Citation

  • Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017683
    DOI: 10.1016/j.apenergy.2023.122404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.